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Jamming Percolation and Glass Transitions in Lattice Models
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A new class of lattice gas models with trivial interactions but constrained dynamics is introduced. These
models are proven to exhibit a dynamical glass transition: above a critical density �c ergodicity is broken
due to the appearance of an infinite spanning cluster of jammed particles. The fraction of jammed particles
is discontinuous at the transition, while in the unjammed phase dynamical correlation lengths and time
scales diverge as exp�C��c � �����. Dynamic correlations display two-step relaxation similar to glass
formers and jamming systems.
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In the majority of liquids dramatic slowing down occurs
upon supercooling. In a rather small temperature window,
typically from the melting temperature Tm to about 2Tm=3,
the viscosity increases by 14 orders of magnitude and the
relaxation becomes complicated: nonexponential and spa-
tially heterogeneous [1]. Similar features are observed in
soft materials, such as colloidal suspensions and more
generally in nonthermal ‘‘jamming’’ systems [2]. Despite
a great deal of effort, these remarkable phenomena, asso-
ciated with ‘‘glass transitions’’ are still far from under-
stood. Even the most basic issues remain open: Is the rapid
slowing down due to proximity to a phase transition? Is this
putative glass transition static or purely dynamic [3]?
Experimental results make it clear, however, that if an ideal
glass transition does exist it should have some peculiar
features: the density autocorrelation function C�t� should
exhibit a lengthening plateau that, at the transition, extends
out to infinite times. Thus, the Edwards-Anderson order
parameter, defined as the infinite time limit of C�t�, will be
discontinuous at the transition. But this discontinuity
should be accompanied by a critical divergence of the
relaxation time. And, contrary to usual critical slowing
down, the relaxation time should diverge exponentially,
as in the Vogel-Fulcher law [1]. Long-range spatial corre-
lations, if they exist at all, must be very subtle. These
unusual properties present major theoretical challenges:
whether or not there is a true transition there is no ‘‘stan-
dard’’ framework to start from. There are promising results
for models on Bethe lattices [4] and for some with long-
range interactions [5]. But the quest for models with short
range interactions and no quenched disorder that are sim-
ple enough to be analyzed and can be shown to have a glass
transition, namely, a transition with the basic properties
discussed above, is still open, in spite of much effort.

In this Letter we introduce the first examples of such
models [6,8]. These are kinetically constrained models
06=96(3)=035702(4)$23.00 03570
(KCMs): stochastic lattice gases with no static interactions,
except hard core, but constrained dynamics [7]. The ele-
mentary moves are particle jumps for conservative models
and birth or death moves for nonconservative models.
Whether a move can occur depends on the nearby configu-
ration and is nonzero only if some local constraints are
satisfied. These kinetic constraints can radically change the
dynamical behavior and typically induce glassy phenome-
nology [7,9,10]. For some KCMs the dynamics becomes
so slow at high density or low temperature that they have
been conjectured to undergo a true glass transition. The
simplest examples are Kob-Andersen models on a square
lattice (SKA) [9], where particles can move if and only
if they have no more than two nearest neighbors both
before and after the move. Although the analogous model
on a Bethe lattice [11,12] does have a jamming transi-
tion, we have shown previously in [11] that the SKA and a
broad class of generalizations on hypercubic lattices can-
not have ergodicity breaking transitions: in any finite di-
mension the relaxation time diverges—in many cases in a
super-Arrhenius way—only at the close packing density
(� � 1).

But this is not the only possible behavior. We here
introduce a new class of KCMs that do exhibit a jamming
transition at a nontrivial critical density, �c on finite di-
mensional lattices.

For simplicity we focus on one of the simplest: a square
lattice model without particle conservation; vacancies can
loosely be thought of as ‘‘free volume’’ which need only be
conserved on average. At the end, we discuss generaliza-
tions to both higher dimensional and conservative models.
The stochastic dynamics is as follows: An occupation
variable at site x cannot change if x is blocked along either
of the diagonal directions, as defined below. Unblocked
sites change from occupied to empty and from empty to
occupied with rates �1� �� and �, respectively. Thus de-
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tailed balance is satisfied with the trivial product measure
with density �. The blocking is determined by the eight
fourth-nearest-neighbor sites of x. Denote pairs of these the
north-east (NE), north-west (NW), south-east (SE), and
south-west (SW) pairs as in [Fig. 1(b)]. Site x is blocked
if either at least one of the NE sites and at least one of the
SW sites is occupied, or at least one of the SE sites and at
least one of the NW sites is occupied. Blocking can thus be
along either the NW-SE or the NE-SW diagonals. As the
distance to the blocking neighbors resembles a knight’s
move in chess, we call this the ‘‘knights model.’’

If a site cannot be unblocked even by first emptying with
allowed moves an arbitrarily large number of other sites,
we call the site frozen. Any finite cluster of particles cannot
be frozen: one can always unblock all sites by emptying
from the perimeter in [see Fig. 1(c)]. A crucial question is
whether an infinite spanning cluster of frozen sites exists in
infinite systems. We call this problem jamming percola-
tion; it is akin to bootstrap percolation [13].

We show the following results (which can be proved
[14]): (i) with blocked or periodic boundary conditions on
L� L squares, there exist configurations with system-
spanning clusters of frozen sites; (ii) on infinite lattices,
below a critical density, �c, there are no infinite frozen
clusters; while (iii) above �c, there is an infinite cluster of
frozen particles that occupies a nonzero fraction, �1, of
the area; (iv) �c coincides with the critical density for
directed site percolation (DP) on a square lattice; (v) �1
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FIG. 1. (a) Sites connected by arrows form one of the graphs
on which directed percolation can form frozen clusters: e.g., the
set of occupied sites (big dots) shown. (b) Site X and its NE, NW,
SW, SE pairs of neighbors. (c) Portion of an empty octagonal
annulus. The interior of the annulus, as any finite region sur-
rounded by a double frame of vacancies, can be eaten away.
Whether the vacant region can expand is determined by the three
key sites indicated by question marks. If one of these belongs to
an occupied DP path in the NE direction, which is anchored on
two perpendicular DP paths as shown, it blocks the expansion.
Inset: the full octagon. A necessary condition for the octagon not
to be expandable of one step in the NW direction is that a DP
path spans the dotted rectangle.
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is discontinuous at �c; (vi) below �c, there is a cross-
over length ����: squares of size L� � are very likely
to have a frozen cluster, while for L	 �, the probability
of a frozen cluster falls off exponentially; (vii) as � in-
creases to �c, � diverges exponentially rapidly, as log�

��c � ���� with � � 0:64 related to DP exponents;
(viii) the relaxation time diverges as � or faster. Thus
even though the critical density is the same as for DP, the
behavior is completely different.

We first show that both an unfrozen and a frozen phase
exist. At sufficiently low densities, the occupied sites do
not percolate via connections up to fourth neighbors: the
resulting finite clusters can always be unblocked from their
perimeters. Thus at low densities, frozen clusters do not
occur. In contrast, at high densities, spanning frozen clus-
ters occur. Consider site directed percolation with directed
links that connect a site to its two NE (fourth) neighbors as
in [Fig. 1(a)]. Infinite directed paths of occupied sites exist
for � � pDP

c � 0:705 (the critical threshold for conven-
tional site DP on a square lattice [15]). These clusters of
sites are frozen since each has at least one occupied fourth
neighbor in both NE and SW directions. Thus, �c  pDP

c .
For the above argument it was sufficient to use blocking

along just one of the two diagonal directions. But, because
of blocking in the perpendicular diagonal direction, typical
frozen configurations do not resemble DP clusters: they
consist of short DP paths that terminate at each end in a T
junction with a DP path in the perpendicular direction.
Thus large regions can be frozen even if they are not
spanned by DP clusters.

An explicit construction is instructive. Consider a struc-
ture built of DP paths of length s intersecting at T junctions
as in Fig. 2(a). This structure does not contain any long DP
cluster, yet it is frozen. And, crucially, there exists a similar
frozen cluster as long as each DP path remains inside a
nearby rectangular region of size s� s=6 [see Fig. 2(a)].
Therefore the probability of the system being frozen is
bounded from below by the probability that all these
rectangles are spanned. This is substantial if the DP span-
ning probability of each such rectangle is very high.

The crucial needed property follows from the anisotropy
of critical DP clusters: a cluster of length s typically has
transverse dimensions of order s� with � (often called 1=z),
the anisotropy exponent, � � 0:63 [15]. Therefore an s�
bs rectangle with s in the parallel direction can be cut into
slices of width s� such that for each slice the probability of
DP spanning paths is substantial for � � pDP

c . Therefore,
even at pDP

c , the probability rb�s� of not having any DP
crossing in a large s� bs rectangle is rb�s�<
O�exp��2Cbs1�� �� (with C a constant).

What happens just below pDP
c ? The above argument still

holds for rectangles that are of order the DP parallel
correlation length, �k. This, together with the previously
explained construction of a frozen structure, implies that
an L� L square is likely to have a frozen structure built
of DP clusters of length �k if r1=6��k�L

2=�2
k
� 1. For
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FIG. 2. (a) Frozen structure made of DP paths of length s (rep-
resented by straight continuous lines) intersecting at T junctions.
The A path anchors one end of the B and C paths, while its ends
are anchored by the D and E paths. This anchoring is retained if
path A is displaced until the nearby dotted line, even if the B and
E paths are similarly displaced no further than their correspond-
ing dotted lines. Thus the structure is frozen if all the rec-
tangles—shown and unshown—formed by the solid and dashed
lines are spanned lengthwise by DP paths. (b) Two sequences of
intersecting rectangles, Ri, that, when spanned lengthwise by
directed paths, make the central site, O, frozen. For clarity, the
rectangles in one direction are shown with dashed lines.
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L<�< 
 �k exp�C<�
1��
k
�—a lower bound on �—

squares thus contain frozen clusters with high probability
in spite of the rarity of DP clusters with length larger than
�k � �.

We now need to show that below pDP
c , sufficiently large

squares are unlikely to contain frozen clusters. Again, this
can be done by construction—now of unfrozen regions.
Consider an infinite system within which is an octagonal
annulus of radius (center to NW) ‘ that is completely
empty. Whether or not this empty region can be expanded
depends crucially on three key sites in each diagonal
corner, say, the NW corner, as shown in Fig. 1(c). If all
three key sites are empty or emptyable—i.e., unfrozen—
the empty annulus can be expanded along its two adjacent
(NNW and WNW) sides. A necessary condition to have a
key site frozen is that it belongs to a DP cluster in the NE
direction that is anchored at both ends, as in Fig. 1(c).
Furthermore, in order for this anchorage to occur, it is
necessary that the NE path spans the rectangular dotted
region of size ‘� b‘ (with b a constant) in Fig. 1(c). For
� < pDP

c DP clusters with length ‘much larger than the DP
correlation length, �k, are exponentially rare and the rect-
angle spanning probability is 
 exp��‘=�k� [15]. Thus, if
� < pDP

c , the probability that the annulus can be expanded
out to infinity by successive expansions is high for ‘	 �k
[7,11,13]. Since the infinite system contains a nonzero
density of these empty regions, which can be expanded
to unblock the whole system, we conclude that �c � pDP

c .
Estimating how rare the unblocking regions are near �c

yields an upper bound on the crossover length �. Starting
with a small empty nucleus the—small—probability �
03570
that it can be expanded out to size 
�k (and hence readily
to infinity) is the product of many small terms. This is
dominated by ‘
 �k: from r��k�, we obtain � >

exp��2C>�
1��
k
�. Since in an L� L square there are

�L=�k�2 roughly independent positions for such empty
nuclei, some are likely to occur if �L2=�2

k
is not small.

Thus we find that �  �> 
 �k exp�C>�
1��
k
�. We have

found upper and lower bounds for the crossover length, �,
of similar form; hence

log�
�1��
k

��c����� with���1����k �0:64;

with �k �1:73 the correlation length exponent for DP [15].
We now discuss another peculiarity of this transition: the

nature of the frozen clusters implies that the density,�1, of
the infinite frozen cluster jumps at �c. To analyze the
probability that a site is frozen, consider an occupied
site, e.g., the origin, which belongs to a DP cluster that
extends to a (small) distance ‘0=2 in both the NE and SW
directions: this occurs with some probability p0. Now
focus on two infinite sequences of rectangles Ri of in-
creasing size ‘i � ‘i=12 with ‘1 � ‘0, ‘i � 2‘i�2 and
intersecting as in (Fig. 2). If each of these rectangles is
spanned lengthwise by a DP cluster, the origin is frozen.
The probabilities of perpendicular DP paths are positively
correlated. Thus �1 � p0

Q
i�1� r1=12�‘i��2. Since �k is

infinite at �c, as shown above, rb�‘� decays exponentially
to zero as exp��Cb‘1�z�. Therefore, the infinite product is
nonzero, giving a strictly positive bound on�1��c� for any
‘0. Thus, in contrast to DP or conventional percolation, the
infinite frozen cluster of jamming percolation is ‘‘com-
pact’’—i.e., with dimension d � 2—at the transition.

To supplement our predictions, we have studied L� L
systems numerically. The distribution of the densities, �L,
of the frozen clusters shows two peaks with weak size
dependence as found at conventional first order transitions.
This is consistent with the predicted discontinuous behav-
ior. The probability that there exists a frozen cluster is
substantial for � 15% below �c even in our largest systems
(L � 1600): it is thus hard to study the asymptotic critical
behavior (see [16] for an analogous problem in the context
of bootstrap percolation). But in a slightly different model
one can get closer to the transition [14]: these data are
consistent with the predicted ln�
 ��c � ���� with � �
0:64, but the small range of lnL available makes the
uncertainties in � large.

Our results on jamming percolation have important im-
plications for the equilibrium dynamics of the knights
model. For � < �c the fact that infinite frozen clusters do
not exist imply that the system is ergodic [proof can be
done as in [11] (2.5)] but dynamical correlations, such as
the density autocorrelation function, C�t�, display two-step
temporal relaxation with a long plateau followed eventu-
ally by a relaxation (numerical results will be reported
elsewhere [14]). The relaxation time diverges exponen-
tially near �c, at least as �z, with z � 1: This is reminis-
2-3



PRL 96, 035702 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 JANUARY 2006
cent of the Vogel-Fulcher law found experimentally near
glass transitions. Above �c, the plateau stretches to infinite
times with the Edwards-Anderson order parameter, q �
limt!1C�t�, discontinuous at the transition. This follows
from our results, since q is related to the density of frozen
sites.

We have seen that, even though the critical densities
are the same, the properties of jamming percolation are
strikingly different from the power-law behavior of di-
rected percolation. Most of the physics is controlled by
relatively short DP clusters joined together at T junc-
tions. The only role of long DP clusters is to prevent very
rare large unfrozen regions from unblocking their sur-
roundings. There is substantial universality in the primary
features of the jamming percolation. This extends even to
the SKA model, which has frozen configurations com-
posed of double-width occupied bars that terminate in T
junctions with similar perpendicular bars, but there is no
real transition because very long bars are unlikely. Yet the
SKA’s behavior as � % 1 is similar to the knights model as
� % �c with 1=�1� �� roughly replacing powers of �k.
Surprisingly, if the square lattice of the SKA is replaced
by a particular complicated fourfold coordinated lattice,
�c < 1 and the behavior is similar to the knights model.
Thus the local structure matters a lot as in real glasses.
Note that cooperative models with a transition, in contrast
to those without, display two-step relaxation from the
dynamics within blocked regions: this is like beta relaxa-
tion in glasses [1].

Models with particle-conserving dynamics behave sur-
prisingly similarly to those without: the nature of the
transition (and in some cases the critical density) remain
the same because the slowing of the dynamics is dominated
by the large clusters of the underlying jamming percola-
tion. Diffusive transport rides on top of this [14,17,18]. In
three dimensions, two natural generalizations of our jam-
ming percolation exist: one composed of DP clusters—
which should slow down as a double exponential of
��� �c�� ��—and the other of directed sheetlike structures
that will have exponential slowing down as we have found
in 2D. The key ingredients are kinetic constraints that
enable huge jammed clusters to form out of small objects
without these becoming much more common or much
larger.

For the future, the connection between our results and
the jamming transition found for continuum particle sys-
tems [2] needs exploring. With the hope of increased
understanding of the rapid liquid to glass crossover ob-
served experimentally, one should also analyze the effects
of constraint-violating processes occurring with a very low
rate. For both glasses and granular materials, studying the
nonequilibrium effects caused by a quench or by driving
forces [14] is merited even in the simplest models that
exhibit a jamming transition. After the completion of this
03570
work a new version of a preprint [8] appeared in which
other models with a jamming transition are introduced and
studied numerically.
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