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Martensitic fcc-to-hcp Transformations in Solid Xenon under Pressure: A First-Principles Study
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First-principles calculations reveal that the fcc-to-hcp pressure-induced transformation in solid xenon
proceeds through two mechanisms between 5 and 70 GPa. The dynamics of the phase transition involves a
sluggish stacking-disorder growth at lower pressures (path I) that changes to a path involving an
orthorhombic distortion at higher pressures (path II). The switchover is governed by a delicate interplay
of energetics (enthalpy of the system for the structural stability) and kinetics (energy barrier for the
transition). The two types of martensitic transformations involved in this pressure-induced structural
transformation are a twinned martensitic transition at lower pressures and a slipped martensitic transition
at higher pressures.
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Martensitic transformations have been observed in many
interesting materials such as metals, ceramics, proteins,
and shape-memory alloys [1–4]. These transitions are
characterized by a collective movement of atoms and
very often are accompanied by microstructures such as
twinning and slipping [5]. Solid xenon has a face-cen-
tered-cubic (fcc) crystal structure at low temperature and
ambient pressure. It transforms into the hexagonal-close-
packed (hcp) structure under pressure [6–10]. Recent
angle-resolved x-ray diffraction patterns of Xe revealed
that a martensitic fcc-to-hcp transformation takes place
between 3 and 70 GPa in diamond-anvil cells. The trans-
formation is very sluggish but persists until completion [8].
The evolution of the angle-resolved x-ray diffraction data
suggests that the two phases coexist over a wide pressure
range. These observations are surprising because the ther-
modynamic condition for coexistence of two phases of the
same substance is that the Gibbs free energies of both
phases are the same, and it is unlikely that such an equality
persists over a wide range of pressures at a particular
temperature [11]. Over decades, a large number of experi-
mental [6–9] and theoretical studies [12–18] have been
devoted to understanding the mechanism or sequence of
pressure-induced phase transformations in solid xenon.
However, a quantitative study that explains what causes
this transformation to be very sluggish and yet very persis-
tent is still missing.

Several scenarios have been proposed to explain the
changes in the x-ray diffraction patterns occurring during
the pressure-induced fcc-to-hcp transformation in solid
xenon. One interpretation is that an unknown intermediate
phase intervenes between these pressures [7]; another is
that the fcc and hcp phases coexist [8,17]. The present
work has two aims: to provide a quantitative understanding
of phase transformation mechanisms under pressure and to
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shed light on the origin of the sluggishness during the
transformation and on the underlying mechanism for the
persistence in completing this transformation. A phenome-
nological description of the phase transformation in solid
xenon may be a generic example of situations encountered
in the pressure-induced structural transformations of ele-
ment solids such as Kr [9], Co [19], and Pb [20].

The similar energies and structures of the fcc and the hcp
phases are challenges for accurately describing solid xe-
non. However, density-functional theory (DFT) with the
local-density approximation (LDA) has been successfully
applied to studying rare-gas solids under pressure
[16,17,21] since the van der Waals contribution becomes
less important with increasing pressure [22–24]. For total-
energy calculations, we use the first-principles FHI98MD

code [25,26]. This is a fully self-consistent DFT method
which employs standard norm-conserving pseudopoten-
tials. We used the LDA by Ceperley and Alder [27] as
parametrized by Perdew and Zunger [28] and tested both
Hamann [29] and Troullier-Martins [30] types of norm-
conserving pseudopotentials. Results presented in this
Letter are obtained by using Hamann-type pseudopoten-
tials since they produced slightly better structural parame-
ters compared to experiments. The kinetic energy was cut
off at 70 Ry. Large supercells were used, up to 32 atoms for
enthalpy calculations and 48 atoms to calculate energy
barriers. The k-point integration is performed with mesh
points corresponding to 8 k points in the Brillouin zone.
The total energy was minimized by using the damped
Joannopoulos algorithm [31].

Our calculated structural properties for the fcc phase
such as the equilibrium volume, 38:08 cm3=mol, and
bulk modulus, 3.81 GPa, are in excellent agreement with
recent experimental data, 37:97 cm3=mol and 3.6 GPa,
respectively [8]. Such agreement suggests that this ap-
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proach provides a solid theoretical framework for model-
ing the structural evolution and transformation of Xe at
high pressure. The difference between the calculated and
experimental fcc lattice constants becomes negligible at
higher pressures. For example, the calculated lattice con-
stant of the fcc phase at 25 GPa, 4.85 Å, is in excellent
agreement with the experimental value, 4.86 Å. Our
density-functional calculations also predict a difference
of only 0.02 eV in cohesive energy between the fcc and
hcp phases at ambient conditions. Details will be discussed
elsewhere [32]. The energy barriers for the stacking-
disorder growth pathway (path I) and an alternative path-
way involving an intermediate orthorhombic distortion
(path II) were examined using DFT calculations to under-
stand the underlying transformation mechanisms. For
path I, the fcc stacking grows into hcp domains, as pre-
viously proposed [8], through sliding of adjacent f111g
planes. This changes the stacking order along the h111i
direction from the ABCABC � � � to the ABABAB � � � . In
this scheme a large supercell with 48 atoms in six layers
was used to simulate the twinned martensitic [5] fcc-to-hcp
transformation in solid xenon. If the first and second layers
are fixed, sliding the third and fourth layers relative to the
first two layers switches the stacking order from
ABCABC � � � to ABABCA � � � . At the same time, the fifth
and sixth layers slide relative to the third and fourth layers,
changing in the stacking order from ABABCA � � � to
ABABAB � � � .

Figure 1 shows the calculated energy barriers for path I
at several pressures. At ambient pressure, the very small
energy barrier, 0:02 eV=atom, facilitates the fcc-to-hcp
a b c d e f
Structural configuration

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
n

er
g

y 
(e

V
/a

to
m

) Ambient
2.2 GPa
4.4 GPa
10 GPa
18 GPa
25 GPa

(a) (b) (c) (d) (e) (f)

FIG. 1 (color online). The calculated energy barrier for the
stacking disordered growth (path I) transformation pathway at
0, 2.2, 4.4, 10, 18, and 25 GPa. The energy is calculated relative
to the value of the fcc phase at the same pressure. The initial
configuration (a) is the fcc phase, and the final configuration (f)
is the hcp phase. In the structural representations, the [111]
direction of the fcc phase is coming out of the page.
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stacking growth. However, the barrier increases with pres-
sure and becomes fairly large, 0:26 eV=atom, at 25 GPa.
This large barrier explains the sluggishness of the fcc-to-
hcp transformation observed in experiments [8] since the
majority of xenon is still in the fcc phase which is stable
at low pressures. Our DFT calculations confirm, below
25 GPa, the recently proposed fcc stacking-disorder growth
mechanism for the transformation [8]. At lower pressures,
stacking disorder in the fcc lattice grows into hcp domains
as pressure increases because the hcp structure becomes
more stable and the energy costs of stacking faults are very
small. Despite the sluggishness of this structural transfor-
mation and the increasing activation energy barrier, it takes
place persistently up to 70 GPa. This suggests that the
underlying mechanism changes at higher pressures, but
to what? At pressures above 25 GPa, enthalpy calculations
of Xe indicate that the fcc stacking becomes unstable to an
orthorhombic distortion. This instability leads to an alter-
native transformation pathway leading to the hcp phase
(path II).

Path II through the orthorhombic distortion was simu-
lated by enthalpy calculations. Figure 2 shows results for
fcc, hcp, and face-centered orthorhombic (fco) Xe. These
results imply that the transformation from the fcc to the hcp
phase starts at about 5 GPa, in good agreement with experi-
ments [7,8] and previous theoretical calculations [16,17].
The enthalpies of fco and hcp Xe stay very close to the
enthalpy of fcc Xe, about 70 GPa. Above 70 GPa, the
enthalpies of the fco and hcp phases differ dramatically
from the enthalpy of the fcc phase. These differences are
consistent with experiments which show that the fcc-to-hcp
transformation is complete around 70 GPa. The fact that
enthalpies of the fcc and fco phases cross at 22 GPa is
consistent with the experimental observation of the sudden
jump in the intensity of the hcp phase around 25 GPa. Our
results suggest that this sudden jump is due to the appear-
ance of the orthorhombic distortion, which makes solid Xe
overcome the increasing sluggishness of the fcc-to-hcp
sliding mechanism because of the larger energy barrier at
higher pressures as shown in Fig. 1. That is, at 25 GPa, the
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FIG. 2. The calculated enthalpies of the fcc, hcp, and fco
phases of solid xenon. The fcc phase is the reference. The solid
line and dot-dashed line indicate the hcp and fco phases, re-
spectively.
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orthorhombic distortion provides an energetically more
favorable pathway for the transformation from the fcc
phase (path II).

In modeling path II, the orthorhombic structure was
considered as the intermediate in the fcc-to-hcp transfor-
mation. Although group theoretical analysis [33] based on
the symmetries of the initial fcc and final hcp structures
allow either a monoclinic or orthorhombic intermediate,
comparison of our simulated x-ray diffraction patterns with
recent experimental diffraction data [8] suggests that the
face-centered orthorhombic structure (fco, F222 space
group) is the only possible intermediate. Details of these
structures of Xe will be discussed elsewhere [32].

Figure 3 shows the calculated energy change along
path II at 25 GPa where the orthorhombic structure has
lower enthalpy than the cubic phase as shown in Fig. 2. A
different plane sliding scheme is applied for path II. The
f001g planes are divided into two groups with each adja-
cent plane belonging to different groups. The transition
involves one group moving relative to the other along the
h010i direction to complete the slipped martensitic fco-to-
hcp transformation [5]. Since the f111g planes slide most
easily for the fcc structure, the f001g sliding scheme is
energetically unfavorable in the fcc phase. However, the
stability of the orthorhombic distortion makes this pos-
sible. This is explained by the larger interlayer distance
and, therefore, weaker interatomic interactions between
adjacent f001g planes in the fco structure.

Once the orthorhombic distortion begins, there is no
energy barrier to impede further transformation to the
hcp phase along h010i as shown in Fig. 3. This explains
why path II becomes dominant at higher pressures where
the energy barrier for path I continues to increase. These
results present a clear picture of the pressure-induced
structural transformation in xenon. Path I, the stacking-
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FIG. 3. The calculated energies for path II at 25 GPa and 0 K.
The parameter u represents the relative shear of adjacent planes
along the [010] direction and is normalized by the lattice
constant b. The fco (hcp) structure corresponds to u � 0
(1=6). Energy is calculated relative to the fco phase. The [001]
direction is perpendicular to the page, and the [010] direction is
upward. Atoms represented by open circles move in the [010]
direction relative to those represented by filled circles.
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disorder growth in f111g planes, is the main transformation
mode at pressures below 25 GPa; then path II, involving
the orthorhombic distortion followed by spontaneous
atomic rearrangements to the pure hcp phase, takes over
at higher pressures. These results also explain why a fco
phase of Xe has not been identified experimentally.

Figure 4 shows the calculated volume compressions for
fcc, hcp, and fco Xe, which agree closely with the experi-
mental data [8]. There is an excellent agreement between
theory and experiment for the fcc phase at P< 25 GPa and
for the hcp phase at P> 68 GPa. In the pressure range of
25 to 68 GPa, the experimental data nominally assigned to
the fcc phase lie between the theoretical results for fcc and
hcp phases as shown in Fig. 4(a). However, the calculated
volume compression results for the fco phase lie on top of
the experimental data as shown in Fig. 4(b), which is
remarkable since the calculations involved no adjustable
parameters. These results provide a distinct quantitative
description of the fcc and hcp phases of Xe and clearly
suggest that the fco structure is an intermediate in the fcc-
to-hcp transformation in Xe. Although the orthorhombic
structure satisfies the necessary conditions imposed by
group theory for an intermediate, an appropriate simulated
x-ray diffraction pattern, and computed equation of states
between 25 and 68 GPa, the calculations also prove that it
is not an intermediate phase but only a transitory state
along the reaction path. Indeed, the system transits through
this structure to overcome the energy barrier of path I.

In summary, we have demonstrated that the fcc-to-hcp
transformation in solid xenon proceeds via two mecha-
nisms. At pressures below 25 GPa, the transition proceeds
via a stacking-disorder growth mechanism (path I). At
higher pressures, the mechanism changes to follow a dis-
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FIG. 4 (color online). Calculated volume compressions for
(a) fcc and hcp phases, and (b) fco phase. Open circles and
squares represent experimental data for the fcc and hcp phases,
respectively [8]. Filled circles, squares, and diamonds represent
theoretical data for the fcc, hcp, and fco phases.
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tortion through a structure with fco symmetry (path II). The
assignment of the fco structure is based on symmetry
constraints as well as structural and enthalpy calcula-
tions which closely agree with experiment. The measured
sudden change in x-ray intensity at around 25 GPa is
identified as the signature of the mechanistic switch. The
calculated energy barrier results provide a quantitative
explanation for the sluggishness of the fcc-to-hcp trans-
formation and highlight the mechanism for switching to
path II at high pressure. These results resolve the long-
standing issue of the mechanism for the pressure-induced
structural transformation in Xe. A systematic study on
similar phenomena observed in other materials such as
Ar and Kr will provide a better understanding of the
delicate interplay between energetics and kinetics during
the structural transformation.
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