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X-Ray Tomographic Imaging of Crystal Structure at the Atomic Level
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A direct nondiffractive tomographic algorithm is proposed for the determination of the crystal structure
from real-space projections obtained by illuminating the sample with white x rays. This approach was
applied to the pattern of the directional fine structure in absorption of white x rays recorded for a GaP
crystal and allowed for a determination of the electron density distribution within the unit cell.
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The majority of x-ray methods for crystal structure
investigations are based on diffraction phenomena and
sample the information in the reciprocal space by measur-
ing the intensities at discrete Bragg peak positions [1].
Usually, a Fourier transformation is used to recover the
electron density distribution of the object. However, a
direct back transform is hindered by the lack of phase
information in the recorded intensity data and the inversion
algorithms are ambiguous. The phase information can
become directly accessible, e.g., by using anomalous [2]
or multibeam x-ray diffraction [3]. Another approach in-
volves measuring the x-ray wave field intensity at atomic
sites inside a crystal as it is performed in the x-ray standing
wave technique [4] or in x-ray holography (XH) [5,6]. The
absorption cross section in these methods is modulated by
x-ray diffraction, which results in an angular dependent
absorption fine structure measured through the secondary
yield coming from specific sorts of atoms. This directional
fine structure can be inverted to real space by using Fourier
[7] or holographic reconstruction [8]. All these methods
utilize monochromatic x-ray radiation.

In this Letter we propose and demonstrate experimen-
tally that crystal structure can be recovered from real-space
projections obtained with polychromatic x rays (hereafter
called white x rays), by using a nondiffractive tomographic
algorithm. This approach is based on recent work [9],
which showed that the directional absorption fine structure
is related to the spherical projection of crystal structure.
For a white x-ray beam, the wave field, formed by inter-
ference of the incident beam with the waves scattered on
single atoms, cancels out by energy integration for all
directions, except for the forward scattering component,
coinciding with the incident beam. In a practical case, the
white x-ray radiation is not uniform over the whole en-
ergy range, which leads to remnant high order diffrac-
tion effects. However, in the presence of long-range order,
the distortion of the real-space projection is small for
directions coinciding with the lattice planes and, as it
will be shown, does not significantly influence tomo-
graphic reconstruction.

Scattering of spherical waves from atoms of the sample
onto an absorbing atom results in directional absorption
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fine structure [10]. For a white x-ray beam this fine struc-
ture can be written as [9]
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where K is the beam direction, rq is the Thomson scattering
length, N(k) is the effective x-ray spectrum, p(r) is the
electron density, r is the position relative to the absorbing
atom, and the integral extends over the volume V of the
sample. For a perfect white beam, i.e., for N(k) = 1, it was
shown that [9]
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In Eq. (2), (k) can be interpreted as a projection of p(r)
onto a sphere. In the general case a reconstruction of p(r)
from y(Kk) is impossible. However, one can take advantage
of the periodicity of p(r) and write it as p(r) =
Vls(r)Y g Fre™™, where s(r) is the shape function [1],
which for simplicity is assumed to have spherical symme-
try, and V is the unit cell volume. Thus, for negligible
dispersion correction of x-ray scattering (i.e., for F_g =
Fy) Eq. (2) can be written as

k) = — TS Re(Faxh - mFrxad )
X v 2 H/XH H)Xulb
where
xi(k) = 78(H - k) = S(H - k), (4)
~ 1 ~
Xia(K) = = S(H - K) 5)

and S(H-Kk) is the Fourier transform of the one-
dimensional central cross section of s(r). These equations
describe the directional signal as being composed of dis-
crete bands localized along projections of lattice planes,
i.e., on great circles on the sphere. These bands are linear
functions of the structure factors Fg. Each band results
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from a superposition of terms corresponding to the set of
all collinear reciprocal lattice vectors H. Depending on the
position of the absorbing atom relative to the planes form-
ing the band, the band can be symmetric or asymmetric.
S(H - K) is a function sharply peaked at zero, and its spread
is inversely proportional to the size of the sample. Thus, for
sufficiently large samples, the strongest bands are well
separated and a significant overlap between them occurs
only at crossing points.

For a nonuniform white spectrum N(k), the remnant
diffraction will distort the functions yg. In a practical
case, N(k) can often be approximated with a Lorentzian.
This allows us to calculate the yj analytically. The cal-
culation is straightforward but cumbersome and will be
published elsewhere. Examples of bands calculated for
parameters, corresponding to those used in the experi-
ment, are shown in Fig. 1(a) for different positions of
absorbing atoms relative to the lattice planes. These
bands have a characteristic half-width given by Ad; =

arcsin[27/(dg/4k§ + Ak?)], where ko and Ak are wave-
vector equivalents of the mean energy and the energy
spread and dj is lattice plane spacing corresponding to
the first order reciprocal vector parallel to fi. For Ak = 0,

this expression reduces to the Bragg condition A =
2dﬁ SinA’&ﬁ.

(a) (b) @ x10”
|
T
c
B
— = @
E E
> 2
£ . 3
) x £
! he]
T 2
§< 5 ........ =
S | g
] 2 -5
H |
02 0 02 ~ 05 0 05 -02 0 02
IdIsin®/(2r) x (d) sind

FIG. 1 (color online). Calculated and measured band profiles
in the directional fine structure of white x-ray absorption.
(a) Shape of bands calculated using a realistic energy spectrum
for absorbing atoms placed at different positions relative to
lattice planes. The positions are shown next to the plots and d
is the lattice plane spacing. The two upper plots show the two
possible symmetrical configurations, whereas the bottom plot
shows an asymmetric one. The window functions w™ (solid line)
and w~ (dashed line) used for data evaluation are superimposed
on the model curves. (b) Functions arising in the projection
integrals calculated for bands shown in (a): g*(x) (top) and
1/x#* g (x) (bottom). Dash-dotted lines show zero levels.
(c) Top curve: Measured integrated intensity of (111) band (solid
circles, GaP A side; open squares, GaP B side). Bottom: the
difference of the two experimental curves.

Let us now prove that the directional white x-ray ab-
sorption fine structure can be tomographically recon-
structed to recover the electron density. Consider a single
intensity band, determined by the unit vector fi normal to
the corresponding set of lattice planes and two quantities
measured across the band from the experimental pattern

x(k):
I = ]Wi(ﬂﬁ)/\/(ﬂﬁ)dﬂﬁ, (6)

where I measures the intensity near the center of the band
and I its asymmetry. The angle J; is the deviation from
the center of the band, and w*(d;) and w™(dJ;) are nor-
malized even and odd rectangular window functions [11].
The windows are introduced to remove effects caused by
overlapping of bands [see Fig. 1(a)]. For further reduction
of the interferences with other bands, these quantities
should be averaged along the great circle. From Eqgs. (3)
and (6) it follows that
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where the summation is performed only for H - i > 0 and
G(t) = [ w* ()99 ©)

depend only on the length H of H. Using Plancherel’s
theorem and the identity 1/x * cos(nx) = 7 sin(nx), based
on Egs. (7) and (8), one can define

I} (mdy) = f [p(r) * g™ (6 - 1)]8(mds — i - 1)V,
(10)
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where the convolution is performed along the fi axis and
g~ (r) = > yaG~ (H)cos(Hr) are even functions, which
for realistic s(r) peak at zero. For m = 0, Egs. (10) and
(11) are equivalent to Egs. (7) and (8), respectively. How-
ever, one can use the invariance of integrals in Eqs. (10)
and (11) with respect to translation in the direction of i by
d; and write them for any integer m. Note that, for a
sufficiently broad N(k) spectrum, the general form of
Egs. (3)—(11) will not change. The shape of N(k) influen-
ces only the exact form of the functions g=. These func-
tions calculated for parameters corresponding to experi-
mental situations are shown in Fig. 1(b).

Equations (10) and (11) can be used as a basis for the
tomographic reconstruction algorithm. In tomography the
object is reconstructed from one-dimensional projections
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obtained at different illumination angles [12]. For a de-
scription of a point source broadband tomographic geome-
try, which is closely related to the present work, see
[13,14]. The projection p4(d) of a three-dimensional ob-
ject p(r) can be described by the 3D Radon transform, i.e.,
by the plane integral [15]:

pald) = [ p(1)3(d — i - 1)V, (12)

where 1 is normal to the integration plane and d is a scalar
defining the plane offset. Comparison of Eq. (10) with
Eq. (12) shows that I; (mdy) is analogous to a 3D Radon
transform of the low-pass filtered electron density distri-
bution p(r) * g* (fi - r). The projections are sampled for a
discrete number of illumination angles fi and virtually for a
discrete number of plane offsets mdy. Similarly, Eq. (11)
can be interpreted as the 3D Radon transform of the low-
pass filtered asymmetry of the electron density distribution.
The width of the g* functions is of the order of ~dg/2.
This ensures that the data are appropriately sampled and no
significant aliasing will occur [12], provided that both I+
are used for reconstruction. Therefore it becomes possible
to reconstruct the atomic structure of the periodic object
without a priori information by using tomographic recon-
struction procedures [12,15].

To check the tomographic algorithm, we performed an
experiment for a GaP crystal, which crystallizes in the ZnS
structure (ag = 5.45 A), and has no center of inversion.
Two single crystal GaP wafers, with orientations (111)
(A side) and (111) (B side), respectively, were used in
the experiment. The white x-ray synchrotron beam (0.5 X
0.5 mm?) was produced by a bending magnet at
HASYLAB/DESY. A 10 mm thick Al absorber was used
to shape a white effective energy spectrum having mean
energy Ey ~ 40 keV and energy spread AE ~ 10 keV.
The effective spectrum is determined by the synchrotron
source emission characteristics, transmission of all ele-
ments placed in the beam, and the energy dependence of
the absorption in the sample. The beam intensity was
monitored with a photodiode at an average current of
~10 wA. To probe the absorption, the sample, biased to
—90 V, was placed inside a gas flow total electron yield
detector filled with He. The measured sample currents
were in the range of 10 nA, whereas the direction depen-
dent fine structure of the signal stayed at the level of 10 pA.
The x-ray absorption of Ga atoms is about an order of
magnitude higher than that of P atoms. The secondary
electron yield is therefore dominated by the Ga atoms
contribution, and this provides the element sensitivity of
the measurements. For measuring the directional depen-
dence of white x-ray absorption, the electron yield was
collected while the sample was rotated relative to the beam
direction. The rotation around the sample normal was
performed continuously with an integration step of 0.3°.
The inclination angle was changed step-by-step with 0.5°

intervals. The acquisition of a full pattern took ~24 h. For
evaluation, a slowly varying background was subtracted
for each azimuthal scan separately. The patterns were
symmetrized in accordance with the rotation axes and
mirror planes. No filtering procedures were applied.

The measured directional absorption fine structure of
white x-ray absorption is presented in Figs. 1(c) and 2(a).
The main features of the signal are bands coinciding with
the real-space projections of crystal planes as shown in the
stereographic projection of the GaP crystal from Fig. 2(b).
Some bands, in particular {111}, display a significant
asymmetry. This asymmetry is especially visible in the
integrated profiles and their difference recorded for A
and B sides. The difference in signal recorded for A and
B sides arises from the noncentrosymmetric structure of
GaP and contains only the information about the P sub-
lattice. The asymmetric shape of bands is directly con-
nected to a different offset of P planes relative to Ga atoms
for the two crystal orientations. This allows for determi-

FIG. 2. Directional fine structure of white x-ray absorption
recorded in the experiment. (a) Pattern recorded for GaP
B sample. Each point in the pattern corresponds to a given
orientation of the sample relative to the x-ray beam. The whole
pattern is presented as a stereographic projection. The intensity
is normalized to the slowly varying background. The visible
bands correspond to real-space projections of the lattice planes.
(b) Stereographic projection of the zinc blende structure. The
lines are geometrical projections of lattice planes.
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FIG. 3 (color). Electron density of GaP directly restored from
experimental data with the tomographic algorithm. (a) Three-
dimensional view. Each voxel is represented as a small bubble
with radius and color proportional to p(r). The edges of the box
are parallel to (001) directions. The axis ticks are separated by
ay/2. (b) Electron density profile along unit cell diagonal. Solid
and dashed lines show the positions of Ga and P atoms, respec-
tively.

nation of the polarity of the sample. Such an information is
not accessible in the recently proposed methods of direct
structure retrieval from XH patterns, which probe only the
real parts of the structure factors, i.e., the symmetrical part
of the structure [16]. Besides, in XH and in Kikuchi
electron diffraction, the asymmetry of the signal can also
be due to dynamical extinction effects and does not ulti-
mately arise from structural differences [17,18]. Here, a
direct comparison of the data, recorded in the same con-
dition for both crystal orientations, shows that the asym-
metry comes solely from structural effects.

The intensity and asymmetry were measured for 21
different bands, and these data were taken as input to the
tomographic algorithm. The lacking data were taken from
symmetry relations. The electron density distribution that
was restored from the experimental pattern is shown in
Fig. 3. The spatial resolution is limited by the lattice
spacing of the analyzed bands having highest order, i.e.,
to d(113)/2 ~ 0.8 A. The additional small maximum in the
profile shown in Fig. 3(b) is an image of Ga atoms as seen
from P atoms. It results from a nonzero contribution of P
atoms absorption to the total electron yield. It can be
avoided by the detection of characteristic radiation. From
the intensity of this artifact one can estimate the sensitivity
of the method for detecting low-Z elements at the level of
at least 3 electrons per atom.

In summary, a direct tomographic algorithm for three-
dimensional imaging of a crystal structure with white
x rays was proposed and tested in the experiment on a
GaP single crystal. This algorithm takes advantage of
kinematical scattering of x rays and permits a direct re-
construction of an atomic structure from real-space pro-

jections. This is hardly possible from forward scattering
patterns observed in electron diffraction [19]. The use of
more powerful radiation sources will increase the photon
flux by several orders of magnitude. More flux would allow
one to detect characteristic radiation instead of total elec-
tron yield. In such a case, the tomographic algorithm could
be applied to directly determine foreign atom positions in
single crystals. Auxiliary simulations showed that the
tomographic approach already works for small clusters
having radii of ~10 nm. Therefore, experiments on low-
dimensional systems, e.g., thin films or buried interfaces
have in principle become possible. Because of the slow
angular dependence of the measured signal, the systems
under investigations could be highly imperfect.
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