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Decay of Pure Quantum Turbulence in Superfluid 3He-B
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We describe measurements of the decay of pure superfluid turbulence in superfluid 3He-B, in the low
temperature regime where the normal fluid density is negligible. We follow the decay of the turbulence
generated by a vibrating grid as detected by vibrating wire resonators. Despite the absence of any classical
normal fluid dissipation processes, the decay is consistent with turbulence having the classical
Kolmogorov energy spectrum and is remarkably similar to that measured in superfluid 4He at relatively
high temperatures. Further, our results strongly suggest that the decay is governed by the superfluid
circulation quantum rather than kinematic viscosity.
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In this Letter we present the first quantitative measure-
ments of the decay of turbulence in a pure superfluid
system. This is a subject of considerable interest since no
conventional dissipation mechanisms are available.

In a classical fluid, turbulence at high Reynolds num-
bers is characterized by a range of eddy sizes obeying
the well-known Kolmogorov spectrum. On large length
scales the motion is dissipationless, whereas on small
scales viscosity comes into play. Decay of the turbu-
lence proceeds as energy is transferred by nonlinear inter-
actions from the largest nondissipative length scales d
(typically the size of the turbulent region) to smaller
length scales where the motion is dissipated by viscous
forces. The dissipation per unit volume is given by ��!2

where � is the fluid density, � the kinematic viscosity, and
!2 the mean square vorticity [1]. An interesting question,
which has received much theoretical speculation [1], is
what happens in a pure superfluid with no viscous
interactions?

Conceptually, turbulence in a superfluid is greatly sim-
plified. Superfluids such as He-II and 3He-B are described
by macroscopic wave functions with a well defined phase
�. The superfluid velocity is determined by gradients of
the phase vS � �@=m�r�, where m is the mass of the
entities constituting the superfluid (the mass of a 4He
atom for He-II or twice the mass of a 3He atom, 2m3, for
the Cooper pairs in 3He-B). Consequently, in contrast to
classical fluids, superfluid motion is inherently irrotational
and vorticity may only be created in the superfluid by the
injection of vortex lines. A superfluid vortex is a line defect
around which the phase changes by 2� (ignoring here
more complex structures such as in 3He-A). The superfluid
order parameter is distorted within the relatively narrow
core of the vortex where all the circulation is concentrated.
The superfluid flows around the core with a velocity, at
distance r, given by vS � @=mr, corresponding to a quan-
tized circulation � � h=m. Vortex lines are topological
defects. They cannot terminate in free space, and therefore
must either form loops or terminate on container walls.
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Turbulence in a superfluid takes the form of a tangle of
vortex lines.

Superfluid hydrodynamics is further simplified by the
superfluid component having zero viscosity. At finite tem-
peratures the fluid behaves as a mixture of two fluids, the
superfluid condensate component as discussed above and
an interpenetrating normal fluid comprising the thermal
excitations. The normal fluid component has a finite vis-
cosity and exerts a damping force on the motion of vortex
lines via the scattering of thermal excitations, this interac-
tion being known as mutual friction.

To date, studies of superfluid turbulence have largely
focussed on He-II at relatively high temperatures. Under
these conditions, it is believed that mutual friction effec-
tively couples the turbulent structures in the normal and
superfluid components [1]. The ensuing combined turbu-
lence is found to behave in an almost identical manner to
that of classical turbulence when generated by a towed grid
[2,3]. The decay of grid turbulence observed in He-II can
thus be explained quantitatively [2,3] using the classical
picture with the conceptually reasonable assumptions that
!2 � ��L�2, where L is the length of the vortex line per
unit volume, and that the effective kinematic viscosity is
�� �n=�, where �n is the normal fluid viscosity and � is
the total fluid density.

The situation in superfluid 3He should be completely
different. The fermionic nature of normal liquid 3He en-
sures that the liquid is very viscous (comparable to room
temperature glycerol). This high normal fluid viscosity
means that the normal component can never become tur-
bulent under typical experimental conditions. Further, ow-
ing to the interaction via mutual friction, turbulence in the
superfluid is also suppressed at high temperatures. Conse-
quently, turbulence in 3He-B is only found at temperatures
below �0:5Tc where the mutual friction has become low
enough to decouple the two components, allowing the
superfluid to support turbulence independently [4].

At even lower temperatures (below �0:3Tc), both the
normal fluid component and mutual friction become ex-
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FIG. 1. The arrangement of the grid and associated vorticity
detector wires.
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ponentially small, the excitations are too dilute to interact
and they become ballistic. In this regime, the whole con-
cept of a normal fluid component breaks down. These are
conceptually the simplest conditions for studying turbu-
lence; we effectively have only one incompressible and
irrotational fluid component with zero viscosity supporting
quantized vortex lines. Here we have a system where the
classical decay mechanism absolutely cannot operate. So,
what happens instead?

Turbulence in superfluid 3He-B can be readily detected
at low temperatures via its effect on the quasiparticle
dynamics [5]. The dispersion curve ��p� of these ballistic
quasiparticles is tied to the reference frame of the sta-
tionary superfluid. The curve thus becomes tilted by the
Galilean transformation ��p� ! ��p� � p � vS in a super-
fluid moving with velocity vS. Consequently, quasipar-
ticles moving along a superflow gradient experience a
potential energy barrier and are Andreev reflected if they
have insufficient energy to proceed [6]. The Andreev pro-
cess converts a quasiparticle into a quasihole and vice
versa, reversing the group velocity of the excitation but
yielding negligible momentum transfer.

The complicated flow field associated with superfluid
turbulence acts as a shifting ragged potential for quasipar-
ticles. The net result is that some fraction of incident ther-
mal quasiparticles are Andreev reflected. Quasiparticles
may be detected in 3He-B at low temperatures by vibrating
wire techniques. The thermal damping of a vibrating wire
[7] in 3He-B arises from normal scattering of quasiparticle
excitations at the wire surface. A wire immersed in turbu-
lence thus experiences a reduction in damping proportional
to the amount of Andreev reflection of incoming thermal
excitations caused by the turbulent flow. This effect has
been exploited to observe turbulence generated by vibrat-
ing wires [5] and vibrating grid [8] resonators at low
temperatures. Andreev reflection from turbulence has
also been measured directly using ballistic quasiparticle
beam techniques [9]. Previous measurements of vortex
generation by a vibrating grid have shown that at low
grid velocities ballistic vortex rings are emitted [8] and
turbulence only forms above a certain critical velocity.
Here, we discuss measurements of the decay of turbulence
generated from a vibrating grid at higher velocities.

The experimental arrangement is shown in Fig. 1 and is
the same as that used for the measurements reported pre-
viously [8,10]. The grid is made from a 5:1� 2:8 mm
mesh of fine copper wires. The wires have an approxi-
mately 11 �m square cross section and are spaced 50 �m
apart leaving 40 �m square holes. A 125 �m diameter Ta
wire is bent into a 5 mm square frame and attached to the
inner cell wall of a Lancaster style nuclear cooling stage
[11]. The mesh is glued to the Ta wire over thin strips of
cigarette paper for electrical insulation.

Facing the grid are two vibrating wire resonators made
from 2.5 mm diameter loops of 4:5 �m NbTi wire. The
‘‘near’’ and ‘‘far’’ wires are positioned 1 and 2 mm from
the grid, respectively. An additional wire resonator is used
03530
as a background thermometer. This wire, not shown in the
figure, is located about 4 mm to the side of the grid and
enclosed in a mesh cage to ensure that its response is not
influenced by any stray turbulence.

The grid is operated similarly to a wire resonator. It is
situated in a vertical applied magnetic field and driven by
the Lorentz force generated by passing an ac current
through the Ta wire. As the grid moves, the Ta wire de-
velops a Faraday voltage proportional to its velocity. The
grid resonates at a frequency of�1300 Hz, determined by
the stiffness of the Ta wire and the mass of the grid.

In contrast to a vibrating wire resonator, the grid shows
no sign of a pair-breaking critical velocity. In the low
temperature limit, the grid’s response changes gradually
from a linear damping force F / v for velocities below
around 1 mm=s, to approximately F / v2 behavior at
higher velocities [10]. The linear response is governed by
the intrinsic (vacuum) damping of the resonator motion.
The response at high velocities has the form expected for
turbulent drag from a classical fluid [10].

Vortices generated by the grid are detected by the two
facing vibrating wire resonators as discussed in [8]. Briefly,
the two resonators and the thermometer resonator are
driven on resonance at relatively low velocity. The result-
ing induced voltages across the wires are continuously
monitored, allowing us to deduce the quasiparticle damp-
ing (frequency width of the resonance) �f2�T� for all three
wires. The grid is then driven to some velocity v generating
vortex lines (ballistic vortex rings at low velocities; turbu-
lence at higher velocities). This vorticity Andreev reflects
some fraction f of quasiparticles approaching a vibrat-
ing wire, giving rise to a reduced damping �f2�v; T� �
�1� f��f2�0; T�. In practice, significant power is required
to drive the grid, resulting in an overall warming of the cell.
The damping in the absence of turbulence �f2�0; T� is
therefore inferred from the thermometer wire damping
(with no turbulence, the quasiparticle damping on each
of the three wires is simply related by a measured constant
of proportionality, close to unity). The fractional screening
f of quasiparticles due to the surrounding turbulence is
thus measured for the two facing wires.
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FIG. 2. Solid black curves show the inferred vortex line den-
sity as a function of time after cessation of grid motion for
various initial grid velocities. Line A is the limiting behavior
scaled to our results as discussed in the text. The halftone data is
that for a towed grid in superfluid 4He of Skrbek et al. [3] with
line B showing the late-time limiting behavior. Line C shows the
expected behavior for our data assuming the classical dissipation
law. Curve D shows the expected behavior for a random tangle in
superfluid 3He. See text.
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All the measurements discussed below were made at
12 bar and at temperatures below �0:2Tc. At such tem-
peratures the turbulence is found to be insensitive to tem-
perature. This is consistent with previous measurements,
both of turbulence generated from vibrating wires [9] and
of vortex rings generated from a vibrating grid [8], indicat-
ing that we have reached the zero temperature limit for the
turbulent dynamics where both the normal fluid fraction
and the mutual friction are negligible.

The steady state average values of the fractional screen-
ing f are found to increase roughly as v2. The far wire,
2 mm from the grid, has roughly a factor of 2 less screening
than the near wire, 1 mm from the grid, over the entire
velocity range. If the variation with distance followed an
exponential decay, as found previously for turbulence gen-
erated by vibrating wires [12], then this would correspond
to a spatial decay length of d� 1:5 mm.

The approximate vortex line density may be inferred
from these measurements using the arguments of [9].
The fraction of quasiparticles Andreev reflected after pass-
ing through a homogenous isotropic vortex tangle of line
density L and thickness x is given by f ’ LpF@x=2m3kBT,
provided f is small compared to unity. Since in practice the
tangle density varies in space, we should strictly integrate
an analogous expression over all quasiparticle trajectories
incident on the vibrating wire resonators. This is obviously
not possible without an accurate knowledge of the spatial
dependence of the tangle. We therefore simply use the
above expression with x � d � 1:5 mm to give an esti-
mated average line density which should be correct to
within a factor of order 2.

The transient behavior of the inferred line density after
the drive to the grid is turned off is shown in Fig. 2 for the
wire nearest to the grid. Data are shown for various initial
grid velocities down to 3:5 mm=s. (At lower velocities the
recovery is much faster corresponding to ballistic vortex
ring production [8].) At late times the data all tend to a
single limiting line (line A in the figure).

In Fig. 2 we also show data for turbulent decay from a
grid towed at various velocities through He-II [3]. The
authors shifted the time axis for each of these curves, but
this does not effect the late-time behavior which is fitted by
line B [2,3] (see below). The fitted line lies about a factor
of 4 higher than our data. The authors were able to explain
these observations in some detail on the basis of classical
turbulence of the combined normal/superfluid components.
The classical cascade process leads to a line density which

decays as L � �d=2���
���������������������
�27C3=�0�

p
t�3=2 at late times

[2,3], where C is the Kolmogorov constant, expected to
be of order unity and d is the characteristic size of the
container (which limits the maximum eddy size in the
classical theory). Excellent agreement was found with their
data using C ’ 1:6 and an effective kinematic viscosity �0

of roughly twice the actual kinematic viscosity, �n=�.
If we take a similar approach and naively use this

classical expression for the late-time line density, substi-
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tuting the appropriate numbers for our experiment then we
obtain line C in Fig. 2. This line lies much lower than that
of 4He partly since dimension d is smaller (d � 1:5 mm in
our case against d � 10 mm for the 4He experiments) but
mainly because the normal fluid viscosity [13] is orders of
magnitude larger for 3He. It is very clear that our measure-
ments, even though they are similar to those in superfluid
4He, cannot be explained by the classical decay mecha-
nism, as we anticipated.

The Kolmogorov energy cascade in classical turbulence
is a consequence of dissipation being negligible on large
length scales. As suggested by Vinen [1], it seems reason-
able to expect that superfluid turbulence as generated by
grids will display a similar cascade process owing to the
similar absence of large length scale dissipation mecha-
nisms. This expectation is supported by numerical simula-
tions [14], which show evidence of a Kolmogorov-like
cascade in pure superfluid turbulence in the absence of
any normal fluid component. In other words, for He-II both
fluid components have a natural tendency to display the
Kolmogorov-like cascade. Therefore, this behavior is
likely to occur at arbitrary temperatures, and with the
two flows locked together by mutual friction at the higher
temperatures. By the same reasoning, one might expect
similar behavior for superfluid 3He-B in the low tempera-
ture limit. At the higher temperatures, mutual friction will
now couple the superfluid turbulence to the highly viscous
nonturbulent normal 3He, suppressing turbulence com-
pletely at high temperatures, and yielding a different en-
ergy spectrum in the intermediate region [15].

At very low temperatures in the superfluid where there
are no mutual friction processes, Vinen [1] has argued (on
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purely dimensional grounds) that any process leading to
loss of vortex line length must depend on the circulation
quantum, yielding a dissipation of order ����L�2. The
effective kinematic viscosity in the decay equation should
therefore be replaced by a term 	� where 	 is a dimen-
sionless constant, presumably of order unity. The line
density at late times of the turbulent decay should therefore

be described by L � �d=2���
�����������������������
�27C3=	��

p
t�3=2.

Since in He-II the kinematic viscosity and the circula-
tion quantum are numerically similar (� 	 0:1�), the data
of Skrbek et al. [3], interpreted above on the basis of the
kinematic viscosity, are also consistent with a dissipation
based on the quantum expression with 	 	 0:2. However,
� and � are orders of magnitude different in superfluid 3He.
If we use the Vinen expression for our data, with d �
1:5 mm and 	 � 0:2, then we obtain the expected late-
time behavior shown by line A in the figure. (Equivalent to
scaling the late-time He-II data by d and �). The agreement
is quite staggering, since not only does the superfluidity in
the two systems arise from completely different mecha-
nisms, but both the temperature regimes and normal fluid
viscosities differ by many orders of magnitude.

The decay for the lowest grid velocity shown in Fig. 2
appears to show a limiting behavior closer to t�1. A purely
random tangle can have only one length scale, that of the
intervortex spacing L�1=2 and hence no Kolmogorov cas-
cade. In this case the line density is expected to decay by
the Vinen equation [1] _L � 	 0�L2. Curve D in the figure
shows the expected behavior according to this equation
with 	 0 � 0:3 and an initial line density chosen to match
the lowest grid velocity data at the start of the decay. The
agreement is fair, suggesting that the Kolmogorov energy
cascade might only develop for higher grid velocities (line
densities). This is not conclusive however, since the lower
grid velocity data could also be made to fit with the full
classical model given in [3].

As a final caveat, if the turbulence we generate is in-
homogeneous then the observed decay may include a
spatial component from the diffusion of the vorticity
down a vorticity gradient. However, we can estimate this
effect from the computer simulations by Tsubota et al. [16]
which suggest that inhomogeneous turbulence evolves
spatially with a diffusion constant of �0:1�. For our
experiment this number yields a time scale for diffusion
of order 
� d2=0:1�� 300 s. This is much longer than
the measured decay time and therefore any contribution
from diffusion should not be significant. (We also note that
turbulence generated in classical fluids by oscillating grids
can be quite isotropic under certain conditions [17].)

In conclusion, we have measured the decay of turbu-
lence in superfluid 3He-B generated by a vibrating grid at
very low temperatures where there is essentially no normal
fluid. The decay is found to be consistent with a classical
Kolmogorov-type energy cascade and very similar to that
found for turbulence from a towed grid in He-II at high
temperatures. This is a remarkable result given that the two
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liquids have entirely different mechanisms for superfluid-
ity and that the measurements were performed at opposite
ends of the temperature range. In contrast to the He-II case,
the decay observed in these measurements cannot be ex-
plained in terms of a classical decay mechanism (i.e., via a
normal fluid viscosity). The measurements strongly indi-
cate that the decay is governed by the circulation quantum,
which has a similar magnitude to that of He-II. The ques-
tions remaining are: (a) what is the specific microscopic
mechanism for the dissipation and (b) how does the super-
fluid tangle acquire or develop the requisite range of length
scales necessary for the Kolmogorov energy cascade to
function?
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