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Edge-localized modes (ELMs) are cyclic disturbances in the outer region of tokamak plasmas that are
influential in determining present and future tokamak performance. In this Letter, we outline an approach
to modeling ELMs in which we envisage toroidal peeling modes initiating a Taylor relaxation [Phys. Rev.
Lett. 33, 1139 (1974)] of a tokamak outer region plasma. Relaxation produces a peeling destabilizing
flattened edge current profile and a stabilizing plasma-vacuum current sheet; the balance between the two
determines the radial extent of the relaxed region. The model can be used to predict the energy losses due
to an ELM and reproduces experimentally observed variations with edge safety factor and plasma
collisionality. There is an intrinsic ‘““‘deterministic scatter’’ in the model that also accords with observation.
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Theoretical models of edge-localized modes (ELMs)
have widely been based upon the assumed presence of
“ballooning” and/or “peeling” ideal magnetohydrody-
namic instabilities [1,2]. ELMs are an important factor in
determining global tokamak performance, and the nature
of ELM power loss deposition presents a challenge to the
design of the proposed International Thermonuclear
Experimental Reactor divertor [3]. In this context, system-
atic integrated codes that incorporate specific ELM models
have been developed [4—7]. Here we describe an approach
to modeling ELMs in which we envisage edge current
density (J,,) driven ideal toroidal peeling modes initiating
a Taylor relaxation [8] of a tokamak outer region plasma.
The model therefore assumes that the plasma is below the
ballooning stability limit and is perhaps best suited to
describe the smaller, more frequent, “type III” ELMs
which occur soon after the plasma shifts from low to
high confinement (the L-H transition) [2,9].

When we adopt the large aspect ratio expansion of a
tokamak, the stability criterion for ideal toroidal peeling
modes is given by [10]
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where a = —2(uoRoq*/B3)dp/dr (with p the pressure),
s = (r/q)dq/dr is the magnetic shear (with g the safety
factor), Ay, is the Shafranov shift, and F, is a quantity
related to the fraction of trapped particles. The pressure
gradient terms on the left-hand side of Eq. (1) represent the
stabilizing effect of favorable average curvature (Mercier),
a stabilizing contribution from the Pfirsch-Schliiter cur-
rents ( < dAg,/dr), and a destabilizing contribution from
the (JF, dependent) ‘“bootstrap” current. The effect of
separatrix geometry on peeling is not taken into account
in Eq. (1); this challenging issue has recently been ex-
plored computationally [11].
We may expect that, when the toroidal peeling stability
boundary is crossed, a rapid process of energy release
occurs, producing the above mentioned post-ELM Taylor
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state. This force-free state in a tokamak has a flattened
toroidal current profile, and we assume that the pressure in
the edge is entirely lost. At first sight, this would appear to
generate an even more unstable situation for peeling
modes, as the stabilizing left-hand side of Eq. (1) disap-
pears with the pressure, and the destabilizing right-hand
side would, in general, increase, as a flattening of a con-
ventional monotonically decreasing current density profile
increases the edge J,. However, it is known that, assuming
the relaxation process occurs quickly compared with cur-
rent diffusion times, a relaxed plasma-vacuum system
generally possesses a skin current distribution at its inter-
faces [12]. We show that current sheets generated in edge
tokamak relaxations generally have a stabilizing effect on
peeling modes. In fact, if § is the width of the edge
relaxation zone, then the magnitude of the increase of
destabilizing edge current density scales as &, while the
magnitude of the stabilizing sheet current produced scales
as 62. Consequently, infinitesimal relaxation widths would
produce a post-ELM state which is still peeling unstable.
However, above a critical width, the post-ELM Taylor
relaxed state can be stable to all possible peeling modes.
We use this fact to calculate the ELM relaxation width.
We describe an outline of the analysis by first noting
that, once edge pressure gradients are removed, toroidal
coupling is absent, and the peeling mode can be treated in
the cylindrical approximation (at least in the large aspect
ratio limit). Stability of the post-ELM state, then, is gov-
erned by the well-known marginal equation of toroidal
force balance [13]
d( dy m2i
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where ¢ is the perturbed poloidal flux, J is the equilibrium
current density, and F = (By/r)(m — nq), with m, n the
poloidal and toroidal wave numbers, respectively, of the
perturbation. Equation (2) holds everywhere in the plasma
and vacuum regions but is subject to boundary conditions
both at the plasma/vacuum (P/ V, r = a) interface and at
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the internal plasma radius that defines the inner boundary
of the relaxed region, r = rp (Taylor relaxation is thus
assumed to occur within the annulus rp <r <a). The
boundary conditions to be applied at the radial stations r =
a and r = rg correspond to demanding that the tangential
stress on the perturbed interfaces be continuous and that
the perturbed interfaces remain flux surfaces. In the pres-
ence of a surface skin current, the latter reduces to demand-
ing that ¢/ F also be continuous (full details of the analysis
will be given in a future publication).

Before showing the model equations that result, we
define four quantities which arise in the analysis that
represent physically relevant equilibrium and perturba-
tion quantities in the system: (i) I = uoRoJ/By =
(1/r)d/dr(r*/q), the dimensionless toroidal current den-
sity related to the safety factor g; (ii) A = (1/g — n/m), a
dimensionless measure of the “‘distance’ between a radial
position and the ‘“‘resonance’ where m = nq (for peeling
modes, A is characteristically a small positive number, so a
resonance occurs just outside the P/V interface);
(iii) K = polRo/(aBy) = [[1/ql], where [[1/q]] de-
notes a jump across the radial station at which I is the
surface skin current; and (iv) A’ = [[(r/¢)dy/dr]], the
jump in the perturbed poloidal flux radial derivative which
is central to MHD stability analysis. [The notation A’ is
standard, and it should be stressed that A’ is not related to
the A defined in (ii).]

We denote the P/V and rg radii with a, E subscripts,
respectively, and, after some algebra, the boundary con-
ditions produced by the sheet currents at r = @ and r = rg
are found to be

AJAAL + 1]+ xa[(ag “2A)AL +m— 1)
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[We can show that the left-hand side of Eq. (3) is propor-
tional to —oW, the ideal MHD energy perturbation [14].]

To complete the mathematical model to be solved, we
must connect A/, to Az across the relaxed region rp < r <
a and, thus, link the radial stations at r = a [Eq. (3)] and
r = rg [Eq. (4)]. This is a straightforward procedure that
uses the solution to Eq. (2) in ideal subintervals [15]; we
give an example application below, after first describing
the calculation of the post-ELM state.

The original Taylor relaxation calculation [8] consisted
of a constrained minimization of the magnetic field energy.
The relevant conserved quantities for a highly conducting
plasma were the total toroidal magnetic flux ¥, and the
global helicity K of the magnetic field, K = [, A - BdV

(with A the magnetic vector potential, B = V X A).
Within the cylindrical tokamak ordering, ¥, conservation
is implicit. A gauge-invariant definition of the magnetic
helicity K must take account of the annular, multiply
connected topology [16] of the region in question.
Accordingly, for our geometry K reduces to K =

[ (r/ ) = r)dr.

As we are dealing with an annular plasma region and,
hence, two cylindrical boundaries, it will be necessary to
invoke a second invariant of the system to determine a final
state. In the same spirit of the Taylor hypothesis that the
global helicity is the relevant conserved quantity for a
highly conducting tokamak plasma, the natural second
quantity to be conserved throughout the relaxation process
in our geometry is the total annular poloidal magnetic flux
Wy = [¢ (r/q)dr.

Combining these considerations, our extended relaxa-
tion problem can be formulated as that of finding a mini-
mization of the poloidal magnetic energy Wy, subject to
conservation of both K and W,. Formally, we require
variations in the functional

a r3 r. o, ) r
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relLq q q
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to be stationary (with A, Lagrangian multipliers). This
problem has the solution ¢/(r) = r?/(Cr* + D) in ry <
r < a. Here the superscript f denotes the final relaxed
profile, and C, D are constants to be determined; in fact,
the ¢/ profile corresponds to uniform toroidal equilibrium
current density. We finally have to specify the post-ELM
state of the external vacuum fields. In general, this must
take account of the interaction of the plasma with the
externally imposed experimental circuit conditions, and
here we take the vacuum poloidal flux to be unchanged
and, hence, take the total plasma current to be held con-
stant. Note that the formalism has no fitted parameters and
gives a uniquely defined final state once the initial g profile
has been specified.

When edge peeling marginality, Eq. (1), is reached and,
subsequently, edge pressure gradient is lost, then Egs. (3)
and (4) become the equations governing stability of the
post-ELM state. It is then required to find a relaxed state
that is stable to all possible peeling modes. We now have
all the necessary parts of the model to perform an example
calculation.

To produce some illustrative results, we investigate an
initial simple parabolic safety factor profile

4 =q+(q.—q)r’, O0=r=L (6)
We should now use this ¢ profile to find solutions to Eq. (2)
and, hence, connect the A ; £ of Egs. (3) and (4). In fact, the
relaxed region (dJ/dr = 0) gives ¢ « r=™, while the vac-
uum region has ¢ « r~™. In this example, we are primarily
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interested in high m peeling modes so we can take the
solution of Eq. (2) in 0<r<rg to be « r" to good
approximation, and it follows that

Al = —2m(Al, +2m)/(gA}, + 2m), @)

where g = 1 — (rg/a)™™.

For a given (g, q,) in Eq. (6), Egs. (3) and (4) (with
XK,r = 0) give a sequence of (m, n) pairs (concentrating
at m = nq,) for which the initial profile is peeling unstable
[left-hand side of Eq. (3) « —6W > 0]. We introduce a
normalized ELM width dg = (a — rg)/a, and then, for
each unstable (m, n) pair, we increase dr in Eqgs. (3) and
(4) (using the relaxed final state in rg < r < a) until 6W =
0, and peeling marginality is achieved. It is then natural to
assume that the model ELM width for any (g, ¢,) corre-
sponds to the largest marginal dz(= dg(max)) obtained
over all the initially unstable (m, n) pairs. Next we may
ask how the dp(max) values vary as the initial equilibrium
is varied.

Figure 1 shows the result of such a calculation, and we
have plotted dg(max) for go = 1 and a range of g,. Note
that a feature of this plot is the “deterministic’ scatter of
the results; this behavior can be traced to intrinsic varia-
bility in the rational (m/n) approximation to g, in the
quantity A, = (1/g, — n/m). Note the concentration of
large dj values to the near left-hand side of integer ¢,
(indeed, for g, < 3, dj, rises to ~0.5). Figure 2 plots the n
values for which the maximal mode exists, and we can see
that the large dj excursions of Fig. 1 correspond to low n
modes. To avoid confusion, we note that this does not
imply that the ELMs themselves have low mode numbers,
merely that the post-ELM state should be stable for both
small as well as large n modes.

For small ELM widths, it proves possible to expand the
entire set of equations determining the system and derive
an analytic expression for dz(max). An expansion of the
post-ELM equilibrium gives XK, « —d2%. Inspection of
Eq. (7) shows that, when dy > 1/m, Egs. (3) and (4)
decouple and (3) gives a quadratic in d2. We can then
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FIG. 1. The maximal marginal dy for the initial parabolic ¢
profile of Eq. (6), plotted against ¢, (go = 1). An analytical
approximation for n = 1 modes is given as the dashed curve [see
Eq. (8)].
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maximize dy in this quadratic by varying A, (taking it to
be a continuous variable). On further taking the edge
current density to be small, the maximal relaxation width
within this expansion is given by

3 R

& =2 0
p(max) = = (al)

®)

(here ' denotes d/dr). For the parabolic ¢ profile of Eq. (6),

we find dg(max) = /3qo/8nq,(q, — qo), and this ap-
proximation to dg(max) for gy, = 1, n =1 is shown in
Fig. 1 as the dashed curve.

If we combine the results of Fig. 1 with the value of the
critical pressure gradient for the onset of relaxation as
given by Eq. (1), we can predict the experimentally mea-
sured values of ELM energy loss (AWgy ) as a fraction of
the total plasma energy (Wpgp) calculated, assuming an
equilibrium pressure equal to the pedestal value every-
where in the core. As an example, we take a characteristic
mega-ampere spherical tokamak (MAST) plasma [17] with
a highly collisional edge [F, = 0 in Eq. (1)] and plot
AWgim/ Weep against g, in Fig. 3.

Typically, AWgram/Wpeep is a few percent, in accord with
the observations [17]. Figure 3 shows that (at least for a
parabolic g profile) there is a trend of ELM losses decreas-
ing with increasing ¢q,. Further, consideration of Eq. (1)
indicates that the critical pressure gradient («) for toroidal
peeling modes increases with F,. This quantity decreases
with collisionality, so we may expect increased ELM losses
as the plasma edge becomes less collisional. These trends
have been reported (at least for type I ELMs) on the Joint
European Torus tokamak [18].

In summary, we have considered a new model for ELM
instabilities that hypothesizes an edge Taylor relaxation
initiated by toroidal peeling modes. As this nonlinear
process proceeds radially inwards, it will leave in its
wake a Taylor relaxed state, which, for conventional
Tokamak ordering, implies a flattened toroidal current
density. This in itself would further destabilize peeling
modes; however, a stabilizing edge skin current is also
formed by the relaxation, and this can lead to an outer
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FIG. 2. The toroidal mode number n which gives the dj values
of Fig. 1.
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FIG. 3. Normalized ELM energy loss AWg; v/ Wpgp of the
initial g profile of Eq. (6) plotted against g, (go = 1). The aspect
ratio (1.5) is MAST-like [17], and a fully collisional edge plasma
is assumed [F, = 0 in Eq. (1)].

annular region that is stable to all peeling modes. The
predicted ELM widths, energy losses, and their natural
scatter are, in general, in accord with experimental obser-
vations as are the dependence on edge safety factor and
collisionality.
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