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« Effect in a Family of Chaotic Flows
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We perform numerical experiments to calculate the kinematic « effect for a family of maximally
helical, chaotic flows with a range of correlation times. We find that the value of a depends on the
structure of the flow, on its correlation time and on the magnetic Reynolds number in a nontrivial way.
Furthermore, it seems that there is no clear relation between « and the helicity of the flow, contrary to
what is often assumed for the parametrization of mean-field dynamo models.
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Cosmic magnetic fields are observed on a vast range of
spatial scales in almost all astrophysical objects from
planets and stars to galaxies. A fundamental question of
astrophysics is then the origin of these fields. Dynamo
theory explains the generation and maintenance of mag-
netic fields through the inductive motions of an electrically
conducting fluid. In its simplest form, the theory is derived
in the kinematic regime, where the back-reaction of the
magnetic field on the velocity via the Lorentz force is
ignored, and the induction equation

%=V><(U><B)+LVZB, (D)
ot Rm
governing the evolution of the magnetic field (B) for a
prescribed velocity field (U), is solved in isolation. Here
the magnetic Reynolds number Rm is the nondimensional
measure of advection to diffusion; typically Rm is ex-
tremely large in astrophysics.

Traditionally, dynamo theory distinguishes between the
study of small-scale dynamos, in which magnetic fields are
generated on the spatial scale of the inductive motions or
smaller, and large-scale dynamos, in which fields are gen-
erated on a length scale much larger than those of the
velocities. Here we are concerned with the latter, which
are often studied within the framework of mean-field elec-
trodynamics [1]. This theory, which is similar in spirit to
closure models employed in purely hydrodynamic turbu-
lence, derives an evolution equation for the large-scale
field involving transport coefficients that depend on the
properties of the small-scale velocity and magnetic fields.
The mean-field ansatz decomposes the magnetic and ve-
locity fields into mean and fluctuating parts,

B = (B) + b, U=(U) +u 2)

The averaging procedure () is assumed to obey the
Reynolds averaging rules [2], which in the case of space
or time averages generally implies the need for a wide
scale separation (either spatial or temporal) between mean
and fluctuating fields. Substitution for B and U from
Eq. (2) into Eq. (1) yields [3]:
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where G =V X (u X b — {u X b)) and where, for sim-
plicity, we have assumed (U) = 0. The next step involves
expressing the small-scale interactions in terms of the
mean magnetic field. We proceed by assuming that there
is no small-scale dynamo in the absence of a large-scale
magnetic field [2] (but we note that for dynamos at high
Rm one expects a small-scale dynamo to operate even in
the absence of a mean magnetic field—see, e.g., [4]); thus
b is linearly and homogeneously related to (B) and we set

E=@Xby=a - (BY+B-VBY+..., (5

where £ is the electromotive force due to small-scale flow
and field interactions, and o and {3 are tensors that depend
on the statistical properties of the velocity field # and on
Rm. Substitution of (5) into (3) yields an evolution equa-
tion for the mean magnetic field, which can then be solved
in isolation. The coefficient @ may be decomposed into its
symmetric and antisymmetric parts, a;; = aj; — €;j1¥i-
The antisymmetric part results in an additional contribu-
tion (7y) to the velocity in the mean-field equation [3]. The
symmetric part (the “« effect’”) acts as a source term for
the mean magnetic field, and leads to the fundamental
difference between Eqgs. (1) and (3). Since afj is the
symmetric part of a pseudotensor, it is nonzero only if
the velocity field lacks reflectional symmetry. It is the
crucial ingredient for the generation of large-scale mag-
netic fields within mean-field electrodynamics and, accord-
ingly, is the term on which we concentrate here.

The fundamental problem in mean-field electrodynam-
ics is thus the determination of a;; which, in general, may
only be achieved through the solution of Eq. (4) for the
fluctuating magnetic field b. This is impossible analytically
unless one resorts to some approximations. The most
widely used is the first order smoothing approximation
(FOSA) in which the nonlinear interactions between u
and b (as manifested by G) are neglected. This approxi-
mation can only be justified under two different but rather
restrictive assumptions [2,3].

For Rm < 1, G < Rm~'V?b, and (4) becomes 9,b =
V X (u X (B)) + Rm~'V?b. For stationary, homogene-
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ous, isotropic turbulence (with «;; = ad;;) one obtains

kK*F(k, o)

=——R /fRZ s dkdo, (©)

where F(k, w) is the helicity spectrum function of the
velocity field.

Alternatively, in the ‘“short-sudden” approximation—
i.e., if the velocity correlation time 7, is far shorter than its
turnover time 7p—then G < 9,b. This approximation is
often used in conjunction with the high conductivity limit
Rm > 1; Eq. (4) then becomes 9,b =V X (u X (B)).
Analytic progress can be made for stationary, homogene-
ous, isotropic turbulence, leading to

a=—%(u-v><u>, @)

where (u - V X u) is the helicity of the flow. More gener-
ally, the expressions for a are more involved; nonetheless,
in the analogues of Eqs. (6) and (7) e is related to Rm and
7. respectively in a linear fashion, and in both cases to the
helicity of the flow.

For both of these approximations, therefore, « is directly
related to the helicity of the flow, but takes the opposite
sign. Moreover, the simplest measure of the lack of reflec-
tional symmetry in a flow is given by the helicity. These
considerations, together with Parker’s picture of the gen-
eration of mean field via the ensemble action of a series of
cyclonic events [5], have led to the widespread belief that
the « effect generated by turbulent motions is related in a
simple way to the helicity. We stress here that expressions
(6) and (7) are derived under two assumptions, neither of
which is likely to be valid in an astrophysical context.
Clearly Rm < 1 is inappropriate but also, for conventional
turbulence, 7, ~ 74, which is outside the range of applica-
bility of the short-sudden approximation. Moreover, at
high Rm, numerical calculations indicate that |b| >
[(B)| [6], so that the term balance leading to (7) cannot
hold. Given that in astrophysical modelling, « is often
parametrized as having a straightforward relationship to
the helicity (and indeed expressions such as Egs. (6) and
(7) are often quoted as justification for such a parametri-
zation) it is important to investigate whether such a direct
relationship holds in general. In this Letter we therefore
investigate the dependence of the « effect on Rm and 7. for
a family of helical flows.

Astrophysical flows are typically highly turbulent and
three-dimensional with huge values of the fluid and mag-
netic Reynolds numbers. Direct numerical simulation of
such flows is impossible and thus any astrophysical simu-
lation necessarily requires simplification. One approach is
to simulate fully three-dimensional flows, in which case
one is limited to moderate [O(100)] Reynolds numbers.
Alternatively one may simplify the structure of the flow in
order to achieve high [0(10%)] Reynolds numbers, which is
the approach adopted here. We solve Eq. (4) numerically
and calculate o for velocities of the form

u = (aylpr —a,, _lﬂ), (3)

where the two-dimensional stream function (x, y; 1) is
chosen to be 27 periodic in space. Notice that although
the velocity depends on only the x and y coordinates, all
three components are nonzero, and so it is capable of
generating magnetic fields via dynamo action. Flows of
the form (8) are homogeneous but highly anisotropic. The
two-dimensional nature of the velocity field is advanta-
geous for two reasons. First, it allows a two-dimensional
calculation of @; consequently, as discussed above, ex-
tremely large values of Rm may be considered. Second,
if the field is also assumed to be independent of the z
coordinate then no small-scale dynamo action is possible
[7]; thus, in the absence of an imposed mean field, the
magnetic field will decay. Hence the small-scale field is
guaranteed to be linearly and homogeneously related to the
mean magnetic field, as assumed in deriving Eq. (5). The
small-scale dynamo properties of flows (8), for different
choices of (x, y; 1), have been extensively studied for
magnetic fields of the form b = b(x, y; t)e’** [8-10]. In
contrast, much less is known about the large-scale dynamo
properties of such flows, although o has been calculated
for a subset of steady flows, as discussed below.

Here we determine the tensor a by solving Eq. (4) with u
given by Eq. (8) and with the imposition of a mean field
B, = (B, 0,0) in order to calculate self-consistently the
emf £ = (u X b). We utilize a two-dimensional pseudo-
spectral discretization in space together with a second-
order Runge-Kutta timestepping scheme. The initial con-
dition b(x,y,7) = 0 is chosen since, together with the
choice of periodic boundary conditions, this ensures that
there is no other contribution to the mean field than the
imposed B,. This two-dimensional ansatz is formally the
limit of a three-dimensional dynamo calculation with k
tending to zero [9,11]. With a uniform mean field, Eq. (5)
simply yields £ = a - B,. Moreover, since the flows are
independent of z, the « effect is anisotropic and occurs in
the xy plane; we therefore concentrate on the 2 X 2 part of
o that relates ““horizontal” quantities.

We focus on two choices of . Initially

Plx, y, 1) = \E(cos(x + ecost) + sin(y + esinz)), (9)

with € a parameter that is allowed to vary. For € = 0 the
flow is steady and hence integrable; any dynamo that
results must therefore switch off as Rm — oo [12,13].
The «a effect for two-dimensional steady flows has also
been calculated [9,14] and, in agreement with asymptotic
studies [15,16], tends to zero with increasing Rm. For € #
0 the flows are time dependent and display Lagrangian
chaos, with the parameter € controlling the size of the
chaotic regions [17]. The small-scale dynamo properties
of the flow with € = 1.0 are well documented [4,10]. In
particular, these flows are known to be good candidates for
fast dynamo action, with the growth rate approaching a
positive asymptotic value as Rm — 0.
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Astrophysical dynamos are however characterized by
the generation of large-scale magnetic fields by turbulent
flows at high Rm. It is therefore vital to understand the
behavior of e in this regime. Specifically, one must there-
fore consider chaotic flows and, to this end, we determine
a, as Rm is increased to large values, for flows (9) with
€ # 0. These are invariant under a 90° rotation about the z
axis with appropriate shifts in space and time; e, as a mean
quantity, is similarly invariant and therefore takes the form
a;; = ad; — €;y. Thus a = By and y = € B; .

Figure 1 shows a typical time series for (u X b),, where,
from now on, {-) denotes an average over the xy plane. The
final state consists of oscillations about a nonzero mean
value £, —which is the value used to calculate «. Similarly
(u X b), is used to calculate y. Figure 2 summarizes a
series of calculations of a and vy for a range of values of
Rm and €. Two main conclusions can be drawn. First, «
and y depend sensitively on Rm. For the range of Rm that
we have investigated (up to Rm = 2 X 103 for e = 1.0) we
have been unable to determine an asymptotic, high Rm
limit for & and 7. It remains an open question as to whether
such a limit does indeed exist and, if it does, whether the
value of Rm needed to attain this limit is related to the
degree of chaos in the flow. It is worth noting that, by
comparison, the small-scale dynamo growth rate for the
flow with € = 1.0 reaches its asymptotic limit by Rm ~
100. Moreover, the values of the coefficients at high Rm do
not appear to be related to their values at lower Rm, where
the FOSA is appropriate. Second, and more striking, is the
fact that & and y change sign as Rm is increased. We stress
again here that the helicity of the flow is the same for all
values of Rm. The curves corresponding to the different
values of e diverge significantly as soon as Rm = 1. For
Rm <« 1, the flows behave according to the FOSA. For
higher Rm, however, & and 7 vary significantly with €, and
hence with the chaotic properties of the flow. It seems
therefore that it is not possible in this case to relate the «
effect solely to mean Eulerian properties of the flows (such
as helicity): its dependence on correlations between the
fluctuating parts of the velocity and magnetic fields
through G in (4) must be taken into account.

It may be argued that the strong dependence of the
transport coefficients e and y on Rm and € are the result
of considering time-periodic flows, i.e., flows with an
infinite correlation time. As noted above, the FOSA in
the high conductivity limit requires 7, << 1, so it is of
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FIG. 1. Typical temporal evolution of (u X b), for flow (9)

with € = 0.75, Rm = 64, By = 1.

interest to see how far this approximation can be extended
to flows with correlation times of order unity or longer.
Therefore we now consider a random version of the flow
(9) in which the stream function is defined as

Y= \/i(cos{x + ecos[t+ ¢(1)]} + sin{x + esin[z + d (1) ]}),
(10)

where the phase ¢(¢) varies on a time scale 7.. The
variation takes the form of long intervals in which ¢
remains constant, at a value randomly selected from a
uniform distribution with 0 < ¢ = 277, interspersed with
intervals where ¢ varies rapidly between these constant
values. Figure 3 shows typical time series of (u X b), for
two different correlation times. Since the time traces are
now random, in order to obtain meaningful averages «
must be evaluated by averaging the emf (u X b), over a
time long compared with the diffusive time scale.

Figure 4 shows « and 7 as a function of Rm for € = 0.75
and for 7. = 1.57, 3.75, and 37.5. For comparison, the
other relevant time scales are the turnover time 7, =
L14;mlS ~ 3.63, the time-periodicity 27, and the diffusive
time scale 7, ~ O(Rm). For low Rm, when diffusion
dominates, the curves again superpose. For short correla-
tion times, « and 7y vary little as Rm is increased and seem
to become independent of Rm as soon as Rm ~ O(1). For
longer correlation times, « exhibits a strong Rm depen-
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FIG. 2. Dependence of « and y on Rm for flow (9) for differ-
ent values of e.
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FIG. 3. (u X b), as a function of time for flow (10) with Rm =

64, € = 0.75, and 7, = 3.75 (top), 7. = 37.5 (bottom).

dence with a sign change, as in the previous example, but
seems to approach an asymptotic limit as Rm increases. We
conjecture that, for any finite correlation time, « attains an
Rm-independent value «* for Rm > Rm”*, with Rm™ an
increasing function of 7. If 7, is infinite, & and y may
never settle down.

An important question is what determines a* (and y™).
In the limiting case of extremely small 7., a* will be
independent of e but linearly related to 7. and to the
helicity (although here o may not go to zero as 7. — 0
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FIG. 4. Dependence of a and y on Rm for flow (10) for
different values of 7. and € = 0.75.

owing to the presence of an underlying systematic flow).
Further simulations demonstrate that, even for short corre-
lation times, a* and y* are still sensitive to the value of €
and hence to the chaotic properties of the flow. Hence, for
finite correlation times, even though « and y become Rm
independent, the structure of the flow still determines their
asymptotic values; indeed, even the sign of a cannot be
determined a priori.

The present work emphasizes that the a effect in the
high conductivity limit, even in the kinematic regime,
remains a delicate issue. What is clear, however, is that
simple prescriptions such as those given by expressions (6)
and (7) are incorrect outside their extremely limited range
of applicability. In a different context, an initial departure
from FOSA has also been noted for a geodynamo simula-
tion at moderate Rm [18]. Models that rely on such simple
parametrizations are therefore likely to be subject to sig-
nificant and undetermined errors. It is therefore essential to
gain a better understanding of the basic physical processes
involved in field transport instead of relying too heavily on
ad hoc parametrizations of mean-field models.
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