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Resonant Excitation of Rossby Waves in the Equatorial Waveguide and their Nonlinear Evolution
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Nonlinear interactions between the baroclinic Rossby waves trapped in the equatorial waveguide and
the barotropic Rossby waves freely propagating across the equator are studied within the two-layer model
of the atmosphere, or the ocean. It is shown that a barotropic wave can resonantly excite a pair of
baroclinic waves with amplitudes much greater than its proper amplitude. The envelopes of the baroclinic
waves obey Ginzburg-Landau-type equations and exhibit nonlinear saturation and formation of character-
istic ‘‘domain-wall’’ and ‘‘dark-soliton’’ defects.
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Because of the change of sign of the vertical compo-
nent of the Earth’s angular velocity at the equator this
region in the atmosphere and oceans is dynamically spe-
cial. There exists a whole family of specific waves local-
ized in the so-called equatorial waveguide [1]. These
equatorial waves, and, in particular, the Rossby waves,
are known to play an important role in the dynamical
processes both in the ocean and in the atmosphere which
determine Earth’s climate, such as the El Niño phenome-
non [2,3], or tropospheric Madden-Julian oscillation, [4].
Together with the equatorial waveguide modes, nonlocal-
ized planetary Rossby waves freely propagating across the
equator also exist. The equator, thus, represents a ‘‘semi-
transparent’’ waveguide.

Below we study nonlinear interactions of the localized
and nonlocalized Rossby modes. Our analysis demon-
strates a resonant excitation of the waveguide waves by
incoming nonlocalized waves with subsequent nonlinear
saturation at the level greatly exceeding the amplitude of
the incoming wave. In their turn, nonlinear interactions
among the waveguide modes modify the incoming wave.
This mechanism of energy exchange between midlatitudes
and the equatorial region is new. The envelopes of the
waveguide modes obey a generalized Ginzburg-Landau
(GL) equation, or a pair of coupled GL-type equations
with coefficients of special structure. We believe these
results are not limited to equator and are generic for semi-
transparent waveguides of various origins.

We use the two-layer model of equatorial dynamics. In
terms of the nondimensional barotropic stream function  ,
baroclinic velocity u � �u; v�, and the depth of the upper
layer h [for details see [5] ], the equations of the model
become:

r2 t� x����J� ;r2 ��s�@xx�@yy���1��qh��uv��

�s@xy��1��qh��u2�v2���� (1)

ut�rh�yẑ�u����J� ;u��u 	r�ẑ�r ��qu 	ru

��s�2hu 	ru�uu 	rh��; (2)
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ht �r 	 u � ���J� ; h� � qr 	 �uh� � �sr 	 �h2u��:
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Here and below the subscripts denote the corresponding
partial derivatives, � is the nonlinearity parameter, and J
denotes the Jacobian. The model is of frequent use in
studies of linear [6] and nonlinear [7] equatorial dynamics
and may be obtained from the full equations for the rotat-
ing continuously stratified fluid by a number of methods
[6,8]. The values of the parameters s � 0 and q depend on
the method of derivation.

In the linear approximation the model describes, among
others, the barotropic Rossby waves which can propagate
at any angle with respect to the equator:

 0 � A ei���ly� � c:c:; � � kx� �t; (4)

with the dispersion relation

� � �k=�k2 � l2�; (5)

and the trapped baroclinic Rossby waves

�u0; h0� � �Um;Hm�Aei�m � c:c:; �m � k̂x� �mt

(6)

with the dispersion relation

�3
m � �k̂

2 � 2m� 1��m � k̂ � 0; m � 1; 2; . . . :

(7)

Here m is the meridional wave number and the functions
Um � �Um; Vm�; Hm are strongly localized near the equator
y � 0 and have the form P�y�e��y

2=2�, where P�y� is a
normalized polynomial of degree m or m� 1 [1].

We study nonlinear interactions of the waves (4) and (6),
at small nonlinearities �
 1, by using the asymptotic
expansions of all fields in � and eliminating the resonances.
As usual, the slow time dependence on T � �t of the wave
amplitudes A , A is introduced:
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� ;u; h� � � 0;u0; h0��x; y; t; T�

� �� 1;u1; h1��x; y; t; T� � 	 	 	 (8)

The dispersion relations (5) and (7) allow for the triadic
synchronism conditions:

k̂ 1 � k̂2 � k;�m1
� �m2

� �: (9)

The key observation is that the interactions among baro-
clinic Rossby waves do not generate resonances in the
right-hand side of (1) and the influence of the baroclinic
waves on the barotropic one may be neglected as long as
the amplitudes of the baroclinic waves A1;2 are not too
large. Hence, the resulting equation for triadic interactions
may be reduced to:

AiTT � KjA j2Ai; i � 1; 2: (10)

Here K is a constant real coefficient (see below), and A 
does not change in time. K is of the order one and positive
in the upper case in (9) and negative in the lower case.
Hence, the barotropic Rossby mode can excite the expo-
nentially growing baroclinic Rossby waves with frequen-
cies lower than its proper one. In what follows we will
concentrate on this most interesting case.

On longer times a secondary barotropic wave � 1 in (8)
generated by self-interaction of the baroclinic modes be-
comes comparable to  0 and its interaction with baroclinic
modes arrests their growth. To study the stage of nonlinear
saturation the asymptotic expansion in � should be rear-
ranged as follows:

 �  0�x; y; t; T1; T2; . . .�

� �1=2 1�x; y; t; T1; T2; . . .� � 	 	 	 ;

�u; h� � ��1=2�u0; h0��x; y; t; T1; T2; . . .�

� �u1; h1��x; y; t; T1; T2; . . .� � 	 	 	 ;

(11)

with slow times Tn � �n=2. In this expansion  0 contains
both primary and secondary barotropic waves. We limit
ourselves by giving the results of the asymptotic analysis
which is rather straightforward; cf. [9] for a similar study.

We start with an interesting particular case where the
baroclinic modes forming a triad with the barotropic one
are identical:

2k̂ � k; 2�m � �: (12)

Analysis of the dispersion relations (5) and (7) shows that
this is possible for small enough k. A standard procedure of
elimination of resonances leads to the following equation
for the amplitude of the baroclinic wave (the bar means
complex conjugation):

AT � � �A� �jAj2A � 0: (13)

The coefficients are of order one and are determined by the
structure of the wave once the value of k is fixed:
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(14)

with

F�y� � �Vm�y�Um�y��00 � 2k�U2
m�y��0 � 4k2Vm�y�Um�y�:

(15)

(We do not give the expression of Im� which has a similar
structure but is rather cumbersome.) For small nonlineari-
ties this equation reproduces (10) with positive K � j�j2

jA j2
.

The full equation (13) has two stationary solutions

A2
� � �

�
�

(16)

which are stable for Re�> 0, and attractive, at least for
the initial values of A in the vicinity of zero. Thus nonlinear
saturation of a growing baroclinic wave always takes place.
A� are of the order unity; therefore, the saturated baro-
clinic amplitudes greatly exceed (by the factor ��1=2) the
amplitude of the initial barotropic wave; cf. (11).

Up to now we considered monochromatic spatially uni-
form waves. If spatial modulation of the excited wave is to
be studied, a hierarchy of slow modulation space scales
X1 � �1=2x; X2 � �x; . . . should be introduced. By work-
ing in a reference frame moving with the group velocity of
the baroclinic wave cg�k̂� a space-time counterpart of (13)
is obtained after proper renormalizations:

AT2
� ic0g�k̂�AX1X1

� � �A� �jAj2A � 0: (17)

This is an equation of the GL type. It falls into the class of
so-called resonantly forced GL equations known in the
literature for various physical situations where parametric
excitation of waves takes place; cf. [10] and references
therein. However, the mechanism of excitation and satura-
tion is different from the standard parametric excitation.
First, the barotropic wave does not act as pure external
forcing, being changed by the secondary barotropic wave.
Second, the resonantly driven GL equation commonly
studied in literature [10–12] contains the term �A with
Re� � 0. In our case this term is absent [13]. The case
closest to ours arises in the theory of the so-called edge
waves on the beaches [9], see below.

The stationary solutions (16) are still solutions of (17)
and it is easy to see that they are stable for Re�> 0, which
is the case. The fact that there are two different stationary
states makes one think of nontrivial solutions of the
domain-wall type, as it is the case for similar GL equations
[10]. A typical result of the numerical simulations of the
evolution of an initially localized A is shown on the Figs. 1
and 2. A characteristic Bloch-type [cf. [11] ] domain-wall
structures appear indeed, forming a bound state (a so-
called bubble, or ‘‘dark soliton’’), of the type studied,
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FIG. 1 (color online). Space-time evolution of a localized wave packet. (a) The wave amplitude jAj, (b) the wave-phase argA, (c) the
real part ReA, (d) the imaginary part ImA. The calculation was performed with a standard MATHEMATICA partial differential equation
solver with spatially periodic boundary conditions, starting from the Gaussian initial distribution of ReA and zero ImA. The values of
parameters are � � ei�=4, � � 1� 0:5i.
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e.g., in [14] although, as said, the structure of equations is
different.

In the general case, a barotropic Rossby wave excites a
pair of different baroclinic waves. Without taking into
account the spatial modulation, the equations for the am-
plitudes of the baroclinic waves are:

A1T � �1
�A2 � �1jA1j

2A1 � �1jA2j
2A1 � 0;

A2T � �2
�A1 � �2jA2j

2A2 � �2jA1j
2A2 � 0;

(18)
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FIG. 2. Initial (top left), and final profiles of the real (dashed line
(solid line), in the calculation of Fig. 1.
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where Re�1;2 � 0. It may be easily shown that this sys-
tem, in general, does not admit stationary solutions. Instead
a harmonically oscillating solution of the form:

A1 � Â1ei!T; A2 � Â2e�i!T; (19)

exists, where Â1;2 are complex constants and ! is a real
frequency. Like (16) this solution is attractive, as direct
numerical tests show.
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Introduction of the slow spatial modulation gives in the
leading order the following system of partial differential
equation:

A1T � cg�k̂1�A1X � �1
�A2 � �1jA1j

2A1 � �1jA2j
2A1 � 0;

A2T � cg�k̂2�A2X � �2
�A1 � �2jA2j

2A2 � �2jA1j
2A2 � 0:

(20)

Because of the presence of two different group velocities
of the baroclinic waves, it is impossible to get rid of the
terms with the first spatial derivative, as it was done in the
case of a single baroclinic wave above. The terms with
second spatial derivatives, thus, appear as the next order
corrections. The system (20) is a hyperbolic system with
straight characteristics dX

dT � cg�k̂1;2�. For localized initial
distributions of A1;2 the angle between the characteristics
determines the zone of influence of the initial conditions.
The behavior of the amplitudes within this angle is similar
to that predicted by (18). Resemblance of the system (20)
to the one describing dynamics of counterpropagating
waves in the Faraday effect [15] is to be emphasized,
with an important difference of absence of linear in A1;2

terms, and different structure of the coefficients.
The physical picture arising from the presented results is

as follows. In the linear approximation the equatorial
waveguide is transparent for the barotropic Rossby waves.
Because of nonlinear effects, the barotropic wave reso-
nantly excites (for instance from the preexisting noise) a
pair of the baroclinic waveguide modes with exponentially
growing amplitudes. In their turn, the interacting baroclinic
waves give rise to an exponentially growing secondary
barotropic mode. This mode has the form of reflected
and transmitted waves spreading with time out of the
equator. Its interaction with the baroclinic modes arrests
the growth of these latter. The amplitudes of the excited
baroclinic waves are rapidly saturated but exhibit charac-
teristic domain-wall-like phase defects and ‘‘dark-soliton’’
structures. The equator, thus, represents a semitransparent
waveguide where the waveguide modes are resonantly
excited by nonlocalized external modes. Inversely, the
nonlocalized modes are modified by waveguide modes.
We believe that this situation is generic. Although one
can imagine semitransparent waveguides of various na-
03450
tures, the only example treated in literature we are aware
of is the beach edge waves. These waves trapped near the
shore may be resonantly excited by the waves coming
onshore from the open ocean [9,16]. Although the scales,
the physics of the system, and the dispersion properties of
the waves are very different from the equatorial waves, the
resulting modulation equations are close. However, they
were not, as to our knowledge, exhaustively studied. The
results of the present Letter apply, at least qualitatively, to
the edge waves, too.
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