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Synchronization from Disordered Driving Forces in Arrays of Coupled Oscillators
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The effects of disorder in external forces on the dynamical behavior of coupled nonlinear oscillator
networks are studied. When driven synchronously, i.e., all driving forces have the same phase, the
networks display chaotic dynamics. We show that random phases in the driving forces result in regular,
periodic network behavior. Intermediate phase disorder can produce network synchrony. Specifically,
there is an optimal amount of phase disorder, which can induce the highest level of synchrony. These
results demonstrate that the spatiotemporal structure of external influences can control chaos and lead to

synchronization in nonlinear systems.
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Networks of coupled nonlinear oscillators provide use-
ful model systems for the study of a variety of phenomena
in physics and biology [1]. Among many others, examples
from physics include solid state lasers [2] and coupled
Josephson junctions [3.,4]. In biology, the central nervous
system can be described as a complex network of oscil-
lators [5], and cultured networks of heart cells are ex-
amples of biological structures with strong nearest-
neighbor coupling [6]. In particular, the emergence of
synchrony in such networks [7,8] and the control of chaos
in nonlinear systems [9—11] have received increased atten-
tion in recent years.

Disorder and noise in physical systems usually tend to
destroy spatial and temporal regularity. However, in non-
linear systems, often the opposite effect is found and
intrinsically disordered processes, such as thermal fluctua-
tions or mechanically randomized scattering, lead to sur-
prisingly ordered patterns [12]. For instance, in the
phenomenon of stochastic resonance the presence of noise
can improve the ability of a system to transfer informa-
tion reliably [13]. Some time ago, Braiman et al. studied
one- (1D) and two-dimensional (2D) coupled arrays of
forced, damped, nonlinear pendula [14]. They found that
when a certain amount of disorder was introduced by
randomizing the lengths of the pendula the dynamics of
the array ceased to be chaotic. Instead, they observed
complex, yet regular, spatiotemporal patterns. Further
studies of the same system showed that chaos in the array
of oscillators can also be tamed by impurities [15] and that
random shortcuts between the pendula lead to synchroni-
zation of the array [16].

Here, we introduce disorder by modifying the driving
forces of the oscillators through phase differences. We
observe the emergence of regular, phase-locked dynamics.
Moreover, for intermediate spreads of the phase angles in
the driving forces, we find that the oscillations become
largely synchronous.

We focus our numerical analysis on arrays of forced,
damped, nonlinear pendula. The 1D array (chain) is de-
scribed by the equation of motion
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ml?6, + v6, = —mglsing, + 7 + 7sin(wt + @,)
+ K(0n+1 + enfl - 20)1)’
n=12...,N. (1)

In order to consider a 2D lattice, we introduce an additional
index, 0, — 0,,,,, n, m = 1,2, ..., N and modify the cou-
pling term accordingly: «(0,,, +6,_; —26,) —
K(0n+l,m + Hn*l,m + 0n,m+1 + 0n,m*l - 40n,m)' For both
the 1D and 2D case, we choose free boundary conditions,
i'e-’ 60 = 01’ GN = 9N+1> and 00,m = 01,m’ eN,m =
Onsim> Ono = 041, 0,8 = 0, y+1, respectively. The pa-
rameter values used are the same as in previous studies
[14-16]: the mass of the pendulum bob is m = 1, the
length [ = 1, the acceleration due to gravity g = 1, the
damping y = 0.75, the dc torque 7' = 0.7155, the ac
torque 7 = 0.4, the angular frequency w = 0.25, and the
coupling strength « = 0.5. For this choice of parameter
values, each isolated pendulum displays chaotic behavior
characterized by a positive Lyapunov exponent [14].

A particularly easy and intuitive way to visualize the
global spatiotemporal behavior of a chain (or lattice) of
oscillators is to consider the average velocity

1 &
o(iT) =5 > 0,07) 2)
n=1

at times that are integer multiples of the forcing period 7 =
27/ w [15]. Considering this measure for an isolated pen-
dulum, Gavrielides et al. performed a bifurcation analysis
with respect to the pendulum length / and found that an
uncoupled pendulum is chaotic for values [ = 1 = 0.002
[17]. If the length of an isolated pendulum is increased to
[ >1.002, it performs a “libration,” in which the com-
bined dc and ac torque are insufficient to overcome the
pendulum’s increased rotational inertia. On the other hand,
if the pendulum’s length is decreased to [/ <<0.998, the
pendulum performs a ‘“‘rotation,” an overturning motion
where the torques combine to rotate the pendulum over
the top.
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FIG. 1. Spatiotemporal angular velocity plots for chaotic and
regular dynamics in an array of N = 50 coupled oscillators. The
chain of pendula is shown from left to right. Time increases
continuously from bottom to top. Gray scales indicate the
angular velocities of the oscillators. Light gray shades represent
negative, dark tones positive velocities.

In our study, we do not alter any parameters that
would affect the dynamics of an isolated pendulum
and keep the coupling strength at its default value.
Instead, we introduce disorder by randomly varying
the phase angles ¢, of the driving forces in Eq. (1). In
the case where ¢, = 0 for all driving forces, we ob-
serve chaotic dynamics in the array (Fig. 1) in agree-
ment with previous studies [14]. However, when we dis-
order the driving forces by randomly choosing the phase
angles ¢, uniformly from the interval [—km, +k7], we
observe that for sufficiently large k the oscillations become
regular.

Figure 2 shows the average angular velocity o(z) at t =
607, 61T, ...,80T for a 1D array of N =50 and a 2D
lattice of 16 X 16 oscillators. The presence of chaos for
small disorder in both the 1D and 2D array becomes
manifest in a dispersed distribution of the average veloc-
ities a(60T), o(61T), ..., o(80T). For larger disorder,
however, we observe periodic patterns in the form of 17,
2T, 3T, ...“attractors,” where the average velocity of the
oscillator array repeats its value after 1,2,3,... forcing
periods. Ultimately, as k is increased further, a 17 periodic
pattern is reached.

FIG. 2. Chaotic and regular dynamics as a function of the
degree of disorder. The average angular velocity at ¢ =
60T, 61T, ...,80T is shown for each value of the disorder
parameter k. (a) 1D array of N = 50 oscillators. (b) 2D lattice
of 16 X 16 oscillators.

In general, the value of k for which a transition from
chaotic to regular dynamics first occurs depends on the
particular sampling of the random phases. We thus con-
sider the average over several different samplings of uni-
form distributions in order to analyze the occurrence of
different forms of periodic behavior. Figure 3 shows the
probability for a 1D array to have reached a 17, 27T, 37T, or
4T attractor after r = 607 as a function of the disorder
parameter k. For very small disorder, i.e., k < 0.02, we
observe only chaotic dynamics, but as k passes this thresh-
old, the first periodic patterns start to appear. For k = 0.1,
we observe that 17, 2T, 3T, 4T, ... attractors coexist with
chaotic behavior. For 0.02 = k = 0.13 the 2T attractor is
the dominant form of dynamics if an attractor has been
reached. For k > 0.28, the array undergoes regular oscil-
lations with period 17 in the vast majority of cases.

Furthermore, in addition to the transition from chaotic to
regular behavior, we observe that the oscillations become
largely synchronous, i.e., the phases of the oscillations not
only lock but tend to assume equal values, for intermediate
values of k. In order to quantify the presence of synchrony
in the array, we consider the averaged cross correlation

2

i<j

where c¢;; denotes the correlation between the ith and jth
oscillator:
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FIG. 3. Probability P of chaotic dynamics (solid line) and
different forms of regular behavior (dashed lines) vs the disorder
parameter k in an array of N = 50 coupled oscillators. The
probabilities were determined by averaging over 100 different
samplings of the phases ¢,,.
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Figure 4 shows C as a function of & for two 1D and one 2D
arrays. Disordering the driving forces results in less syn-
chronized oscillations of the array if the disorder parameter
is very small. The minimum of synchrony is reached for
k = 0.03. Note that the location of this minimum corre-
sponds approximately to the first appearance of regular
dynamics in Fig. 3. When the external forces are disordered
further, synchronization in the array increases and reaches
a peak value for intermediate disorder. In the 1D case, the
maximum is reached for k = 0.3 and its value is Cp,, =
0.72 for N = 50 and C,,x = 0.78 for N = 16 oscillators.
In the case of the 2D array, the synchronization is even
stronger. Here, the peak value of C,,, = 0.95 is reached
for k = 0.2. We attribute the stronger synchronization in
the 2D array to the fact that the number of couplings per
oscillator is higher than in the 1D case. Furthermore,
smaller arrays show a higher degree of averaged cross
correlation than larger arrays. This is because oscillators
that are nearest neighbors show the highest degree of
synchronization, and the ratio of cross-correlation coeffi-
cients obtained from direct neighbors to all cross-
correlation coefficients contributing to the averaged cross
correlation C decreases with increasing size of the array
like O(1/N).

To summarize, we have shown that disorder leads to
transitions from chaotic to regular behavior in arrays of
coupled oscillators when disorder is introduced in the
phases of the driving forces [18]. In this investigation,
each pendulum was in a regime where it behaves chaoti-
cally when uncoupled, in contrast to previous studies in
which parameters were altered that affect the dynamics of
an isolated oscillator [14,15]. In particular, Braiman et al.
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FIG. 4. Synchronization in 1D (dots) and 2D (squares) arrays
of oscillators vs the disorder parameter k. Error bars show one
standard error of the mean. Filled dots correspond to N = 16,
open dots to N = 50. Averaging was performed over 200 (1D)
and 10 (2D) different samplings of the phases ¢,,.

introduced disorder by randomly varying the lengths of the
pendula [14]. Since an isolated pendulum only behaves
chaotically when its length lies within a narrow range, only
2% of the oscillators remained in their chaotic regime in
this approach, and the transition from chaotic to regular
spatiotemporal patterns reported in Ref. [14] can be attrib-
uted to the dominance of the majority of regular pendula
over the few remaining chaotic ones [15]. Our results show
that disorder in the model system described by Eq. (1)
results in regular dynamics of the array even if all individ-
ual elements are chaotic. Moreover, we find that for inter-
mediate disorder, the oscillations show a high degree of
synchronization.

Stimulus-induced synchronization of neural activity in
central nervous systems has intrigued neuroscientists for
decades [19,20]. Furthermore, in many applications, such
as in coupled Josephson junctions, or in the case of atrial or
ventricular fibrillation, one seeks to restore periodic or
steady-state behavior from chaos. It is in regard to these
day-to-day circumstances that control and synchronization
of chaotic dynamics have become one of the central topics
of nonlinear science [21,22]. In most situations the com-
ponents of a system themselves cannot be altered, so it is
desirable to establish methods by which chaos can be
tamed without changing parameters intrinsic to the system.
We thus believe that our proposed mechanism of control-
ling chaos via external forces has potential applications in
these fields.
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