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Chaos Control using Notch Filter Feedback
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A method for stabilizing periodic orbits and steady states of chaotic systems is presented using
specifically filtered feedback signals. The efficiency of this control technique is illustrated with simula-
tions (Rössler system, laser model) and a successful experimental application for stabilizing intensity
fluctuations of an intracavity frequency-doubled Nd:YAG laser.
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FIG. 1. Different control methods applied to the chaotic
Rössler system (1). Spectrum (a) and chaotic time series (b) of
the free running system (u � 0). Transfer function jT�f�j and
time series of the controlled system (feedback switched on at
t � 0) for: (c), (d) TDAS control (2), (e), (f) single notch filter
control (4), and (g), (h) two notch filters control (5).
During the past 15 years many methods have been
devised for controlling chaotic systems by stabilizing
some unstable periodic orbits (UPOs) or fixed points which
are embedded in the chaotic attractor [1–4]. A very effi-
cient class of control schemes that can be implemented
relatively easily in experiments are delayed feedback
methods first applied to chaotic systems by Pyragas [5]
and later analyzed and extended by different authors [6–
13]. All delayed feedback methods provide linear control
schemes that can be described using transfer functions
T�f� in frequency space [7,13]. As a typical example
Fig. 1(c) shows the absolute value of the transfer function
of Pyragas’ time delay autosynchronization (TDAS) con-
trol [5] that is given by T�f� � exp��i2�f�� � 1. If the
delay time � equals the period T of some specific UPO then
all notches of the transfer function coincide with the spec-
tral lines (harmonics) of the UPO. Therefore, the UPO is
not affected by the feedback (noninvasive control) in con-
trast to the ‘‘remaining’’ chaotic dynamics which is
damped out due to the feedback. This mechanism is illus-
trated in Fig. 1 using the chaotic Rössler system

_x � �y� z _y � x� 0:2y� u

_z � 0:2� �x� 5:7�z:
(1)

Figure 1(a) shows the power spectrum and Fig. 1(b) the
time series if no control is applied [u�t� � 0]. The spec-
trum [Fig. 1(a)] possesses some dominant peaks corre-
sponding to UPOs embedded in the chaotic attractor that
can be stabilized using Pyragas’ TDAS control

u�t� � k�y�t� � y�t� ��� (2)

with delay time � � T where T denotes the period of the
UPO to be stabilized. As an example, Fig. 1(d) shows a
stabilized periodic oscillation of the Rössler system (1)
obtained with k � 0:2 and � � 5:85.

Such a stabilization of a periodic oscillation can also be
achieved by replacing the delay line in Eq. (2) by a (linear)
notch filter as shown in Figs. 1(e) and 1(f). The notch filter
used here is given by a Wien-bridge [14]
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where Uin and Uout denote the input and the output signal
of the notch filter, respectively. UC1

and UC2
are capacitor

voltages, Q is the quality of the filter, and RC determines
the resonance frequency fr � �2�RC��1 of the notch fil-
ter. Using this filter the control signal applied to the Rössler
system (1) is given by

u�t� � k�Uin�t� �Uout�t��; (4)

where Uin is chosen here to be the y component of Eq. (1).
Figure 1(e) shows the transfer function of this control
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scheme (4) forQ � 2:3,R � 960 �,C � 1 mF. Although
strictly speaking this is (in contrast to TDAS) an invasive
control method [u�t� does not vanish] the resulting periodic
oscillation is very close to the UPO stabilized with TDAS
in Fig. 1(d).

Stabilization of steady states (fixed points) can be
achieved using additional notch filters (in parallel) which
suppress any spectral components of the dynamical system
that would be excited without control. The case of two
notch filters is illustrated in Fig. 1(g) showing the transfer
function of the corresponding feedback loop

u�t� � k1�Uin �U
1
out� � k2�Uin �U

2
out� (5)

for k1 � k2 � 0:2, Q1 � Q2 � 1:3, C1 � C2 � 1 mF,
R1 � 520 �, and R2 � 1950 �. Figure 1(h) shows the
stabilization of a steady state using as filter input Uin �
y. This steady state, however, slightly deviates from the
fixed point �x0; y0; z0� � ��0:00702;�0:0351; 0:0351� of
the Rössler system (1) because the control signal u�t� does
not vanish but converges to a fixed value shifting the fixed
point.

A noninvasive control scheme for stabilizing an unstable
fixed point of the free running system is obtained by high-
pass filtering the input signal Uin of the notch filter. In this
case the control signal u�t� vanishes once the fixed point is
reached and does not produce an offset of the steady state.

In comparison to the transfer function of multiple delay
feedback control using several delay times [13] notch filter
feedback possesses additional quality parameters that may
be adjusted to the given control task.

The performance of notch filter control depends cru-
cially on the resonance frequencies. This is illustrated in
Fig. 2 for the case of two notch filters applied to stabilize
the fixed point of the Rössler system (1) using the ac
component of y as input signal. A linear stability analysis
was performed for the controlled system and the eigen-
FIG. 2. Stability function max�0;�Re ���� vs resonance fre-
quencies f1 and f2 of the applied notch filters (k1 � k2 � 1:5,
Q1 � Q2 � 0:5) used for stabilizing the fixed point of the
Rössler system (1). Re ��� denotes the real part of the largest
eigenvalue. The system is stable if all eigenvalues possess
negative real part, i.e., if max�0;�Re ���� is positive.
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value � with the largest real part Re ��� was determined.
Fixed point stabilization is successful if this real part is
negative. This is visualized in Fig. 2 by means of the
stability function max�0;�Re ���� which vanishes at pa-
rameter values (notch filter frequencies) where control fails
and whose positive values are a measure of robustness of
the achieved stabilization. If the resonance frequencies
fi � �2�RiC�

�1 of the notch filters are chosen close to
the main frequency � 0:17 Hz of the Rössler system the
fixed point remains unstable because this crucial spectral
component is not fed back. As a result, the stability func-
tion equals zero as can be seen as a white spot in the center
of Fig. 2. On the other hand, high stability can be achieved
if the notch filter frequencies are chosen differently from
each other.

Feedback control using notch filters can easily be im-
plemented in analog hardware. This feature makes it, in
particular, interesting for fast (chaotic) dynamics. An ex-
ample where high frequency chaotic oscillations occur are
compact intracavity frequency-doubled Nd:YAG lasers,
exhibiting intensity fluctuations due to multimode opera-
tion [15,16]. This phenomenon is known in literature as
green problem and is still a topic of current research due to
its relevance for technical applications where intensity
fluctuations have to be avoided. Most attempts to tame
this chaotic instability are based on optical modifications
[17–21] or feedback techniques [22–28]. For higher pump
currents [type-II-chaos [29,30] ] we succeeded in experi-
mental stabilization of the laser’s steady state using mul-
tiple delay feedback [12]. These results were also
confirmed by numerical simulations [31] based on a physi-
cal model for frequency-doubled lasers introduced by
Pyragas et al. [27] and a feedback signal consisting of
differently delayed infrared signals. In the following we
shall demonstrate that stabilization of the laser can also be
achieved using notch filters in the feedback loop instead of
delay lines. The model we used for simulating an intra-
cavity frequency-doubled solid state laser [27] consists of
dynamical equations for the intensities Ij of the optical
modes

dIj
d#
�

�
Gj �

�
��

�
g�Ij � I

0
j � � 2

X
i�j

�ij�Ii � I
0
i �

��
Ij (6a)

and some small signal gains Gj

dGj

d#
� �whuj�x�i � w0

X
i

�ij�I
0
i � Ii� � �Gj

� �
X
im

TijmIiGm: (6b)

# � t=T denotes a rescaled time which is normalized by a
characteristic time T � 2:19 �s of the laser system. In this
model the pump rate

w � w0 � �w (7)
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is assumed to consist of a fixed value w0 and a variable part
�w that can be used for modulation and control of the
laser. The number of active modes depends on the constant
pump ratew0 and we use here a value ofw0 � 1:247 where
three modes with intensities I�1, I0, and I1 are excited. I0

j

denote fixed point intensities for which the boundary con-
ditions

w0

� uj�x�

1�
P
i
I0
i ui�x�

�
� 1�

�
�

�
gI0

j � 2
X
i�j

�ijI
0
i

�
� 0 (8)

hold (h	i denotes spatial averaging). Input signals of the
feedback loop are the two infrared (not frequency-doubled)
intensities Ix � I�1 � I1 and Iy � I0 which are polarized
perpendicular to each other.

Figure 3 shows fixed point stabilization obtained with
notch filter control applied to the laser model. Here ac
components of both infrared intensities Ix and Iy are used
as input signals U1

in and U2
in of two notch filters (3) with

different resonance frequencies fi and the control signal is
given by

u�t� � k1�U1
in �U

1
out� � k2�U2

in �U
2
out�: (9)

Feedback is switched on at t � 8 ms and the system
quickly converges to a steady state with constant light
intensities.
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FIG. 3. Simulation of fixed point stabilization of the output
power of an intracavity frequency-doubled laser using two notch
filters. Ix and Iy denote the infrared intensities whose ac compo-
nents are used as input signals of the notch filter feedback loop.
G is the intensity of the (frequency-doubled) green output light
and u�t� the control signal (9). The constant part of the pump rate
equals w0 � 1:247 and the control parameters are: k1 � 0:9,
k2 � 1:7, R1 � 3590 �, R2 � 420 �, C1 � C2 � 25 mF, and
Q1 � Q2 � 0:5. Control is switched on at t � 8 ms and quickly
stabilizes the light intensities of the laser with an asymptotically
vanishing control signal u�t� (noninvasive control due to high-
pass filtering of the input signal).
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The dependence of stability regions on the filter quality
Q is shown in Fig. 4(a) indicating that too high a filter
quality does not provide higher stability. Figure 4(b) shows
that stability regions are most enlarged if the feedback
gains are chosen different from each other and not too
high (reconfirming similar observations made with the
Rössler system).

Feedback control using two notch filters has also been
applied experimentally using the ac component of the
(frequency-doubled) green output intensity as input of
the feedback loop. It turned out that the experimental
adjustment of the filters is relatively easy if the filter
quality is chosen suitably. Figure 5 shows the experimen-
tally measured infrared signals that quickly converge to
constant values once control is switched on at t � 0 �s.
All attempts to stabilize the laser system at this pump level
with conventional proportional derivative controllers
failed.

In general when trying to stabilize an unstable fixed
point of some given dynamical system one has to distin-
guish between unstable saddles (odd number of positive
real eigenvalues) and unstable foci (pairs of unstable com-
plex conjugated eigenvalues). In [9] it was proven that a
feedback controller consisting of a single pole high-pass
filter is not capable to stabilize unstable steady states with
an odd number of real positive eigenvalues (saddle). This
holds also for notch filter feedback in its noninvasive form
using ac-coupled input signals. To show this we consider
the characteristic polynomial
(a)

(b)

FIG. 4. Stability regions in the R1-R2-parameter plane where
R1 and R2 are the resistors of the two notch filters (3) used to
control the laser model. Combinations of parameters not result-
ing in fixed point stabilization are marked white. (a) Stability
region in dependence of filter quality Q for fixed gains k1 � 0:9,
k2 � 1:7 from dark to bright: Qi � 0:2; Qi � 0:5; Qi � 0:8;
Qi � 1:1; Qi � 1:5. (b) Stability region in dependence of gains
ki for fixed qualities. Q1 � 0:5 � Q2 from dark to bright: k1 �
1:1, k2 � 1:6; k1 � 1:3, k2 � 1:4; k1 � 1:5, k2 � 1:3; k1 � 1:7,
k2 � 1:3; k1 � 1:9, k2 � 1:3.
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FIG. 5. Experimental fixed point stabilization of the output
power of an intracavity frequency-doubled laser using two notch
filters. Shown are time series of the infrared intensities and
control is switched on at t � 0 �s. Input signal for the feedback
loop is the ac component of the green intensity emitted by the
laser.
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S��; ki� � det��I � A� � �N �
XN�1

i�0

ai�
i (10)

given by the Jacobian matrix A of the full N-dimensional
system consisting of the dynamical system and the feed-
back controller. This polynomial is positive for �! 1 and
equals

S�0; ki� � !i
0

Ym
i�1

!2
i

Yn
j�1

��ej� (11)

for � � 0 if m notch filters are applied with resonance
frequencies !i � 2�fi > 0 and ac coupling with cutoff
frequency !0 > 0. Here ej denote the eigenvalues of the
dynamical system to be stabilized. Since an odd number of
eigenvalues is positive S�0; ki�< 0 and therefore S��; ki�
has always at least one eigenvalue in the range �0;1� and
the system is not stabilizable.

The crucial feature leading to this result is the ac cou-
pling that was introduced to render the control noninvasive.
If ac coupling of input signals is not used the proof given
above holds no longer and it may be possible to stabilize
saddle points with odd numbers of unstable eigenvalues.
Whether this is possible or not depends on local properties
of the considered dynamical system. A special case are
dynamical systems possessing a saddle at the origin. In this
case notch filter feedback is noninvasive even without ac-
coupled input signals and stabilization is often possible
(e.g., for the Lorenz system). This result can be generalized
to fixed points away from the origin by using as filter input
the difference of the measurement function and the dc level
of the fixed point to be stabilized (without employing ac
coupling).

To summarize, chaos control using several notch filters
in a feedback loop turned out to be a simple but efficient
method for stabilizing periodic orbits and steady states.
Notch filter feedback is, in particular, useful for fast dy-
namics because it can easily be implemented in analog
hardware and thus provides a promising alternative to
delay control methods.
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