
PRL 96, 032002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 JANUARY 2006
Improved Calculation of Electroweak Radiative Corrections and the Value of Vud
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A new method for computing hadronic effects on electroweak radiative corrections to low-energy weak
interaction semileptonic processes is described. It employs high order perturbative QCD results originally
derived for the Bjorken sum rule along with a large N QCD-motivated interpolating function that matches
long- and short-distance loop contributions. Applying this approach to the extraction of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element Vud from superallowed nuclear beta decays reduces the
theoretical loop uncertainty by about a factor of 2 and gives Vud � 0:973 77�11��15��19�. Implications for
CKM unitarity are briefly discussed.
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Precision studies of low-energy semileptonic weak-
charged and neutral current processes can be used to test
the SU�3�c � SU�2�L �U�1�Y standard model at the quan-
tum loop level and to probe for potential ‘‘new physics’’
effects. Examples for which a fraction of a percent experi-
mental sensitivity has already been achieved include pion,
neutron, and nuclear beta decays [1], as well as atomic
parity violation [2]. In those cases, electroweak radiative
corrections (RC) have been computed [3–5] and found to
be significant (of order several percent). They must be
included in any meaningful confrontation between theory
and experiment.

Of course, inherent to any low-energy semileptonic
process are uncertainties due to strong interactions, since
quarks are involved. To minimize such effects, one often
focuses on weak vector current-induced reactions, where
CVC (conserved vector current) protects those amplitudes
at tree level from strong interaction corrections in the limit
of zero momentum transfer. However, even for those am-
plitudes, electroweak loop corrections can involve weak
axial-vector effects not protected by CVC, which give rise
to hadronic (strong interaction) uncertainties in their evalu-
ation [3,4]. In this Letter, we focus on the best known and
tested examples of that phenomenon, the electroweak ra-
diative corrections to neutron and correspondingly super-
allowed nuclear beta decays along with their implications
for the extraction of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element Vud. However, the method we
describe is quite general and can be easily applied to other
charged and neutral current semileptonic low-energy reac-
tions of interest in particle, nuclear, and atomic physics.

The extraction of Vud (in fact all CKM matrix elements)
entails normalizing a semileptonic reaction rate with re-
spect to the muon lifetime, or equivalently the Fermi
constant derived from it,

G� � 1:166 37�1� � 10�5 GeV�2: (1)

For high precision, electroweak radiative corrections to
both processes must be included and hadronic as well as
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environmental effects (e.g., nuclear structure) must be
controlled. Toward that end, superallowed (0� ! 0�) nu-
clear beta decay transitions are very special since they
involve only the weak vector current at tree level. Small
violations of CVC due to the up-down mass difference or
nonzero momentum transfer are small �O�10�5� and can
generally be neglected (or incorporated). Such an analysis
leads to the very accurate relationship [6,7]:

jVudj
2 �

2984:48�5� s

ft�1� RC�
�superallowed � decays�; (2)

where ft is the product of a phase space statistical decay
rate factor f (which depends on the Q value of a specific
nuclear beta decay) and its measured half-life t. RC des-
ignates the total effect of all radiative corrections relative
to muon decay as well as QED-induced nuclear structure
isospin violating effects. It is nucleus dependent, ranging
from about �3:1% to �3:6% for the nine best-measured
superallowed decays. So, measuring Q and t combined
with computing RC determines Vud. A similar formula
will be given later for neutron beta decay. In that case,
the Q value � mn �mp is very precisely known, but in
addition to the neutron lifetime, gA � GA=GV must be
accurately measured because both weak axial and vector
currents contribute at tree level [1,6].

Our main goal in this Letter is to reduce the hadronic
uncertainty in the radiative corrections to superallowed
nuclear beta decays and thereby improve the determination
of Vud. The need for such an improvement is well illus-
trated by a survey of ft values and RC for superallowed
beta decays by Hardy and Towner [7], more recently
updated by Savard et al. [8], which found

Vud � 0:9736�2��4�EW; (3)

where the first uncertainty stems primarily from nuclear
structure corrections [including O�Z2�3� effects] and very
small ft value errors, while the second, dominant error is
due to hadronic uncertainties in electroweak loop effects.
Although, as we mention later, the first error may currently
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be an underestimate and the central value of Vud could shift
due to future Q value updates, it is clear that the hadronic
loop uncertainty, which comes from weak axial-current
loop effects, currently limits the determination of Vud
and must be improved if further progress is to be made.

Here, we describe a new method for controlling had-
ronic uncertainties in the radiative corrections to neutron
and superallowed nuclear beta decays. It validates our
previous results [4,6] increasing Vud by only a small
�0:000 07, but reduces the loop uncertainty by about a
factor of 2, �0:0004�EW ! �0:0002�EW as we now
demonstrate.

The one-loop electroweak radiative corrections to the
neutron (vector current contribution) and superallowed
nuclear beta decays are given by [3,4,9]

RC EW �
�

2�

�
g�Em� � 3 ln

mZ

mp
� ln

mZ

mA
� Ag � 2CBorn

�
:

(4)

The first two terms result from loop corrections and brems-
strahlung involving electromagnetic and weak vector cur-
rent interactions, with �g�Em� a universal function [9]
integrated over phase space and 3 lnmZ

mp
a short-distance

loop effect. They are not affected by strong interactions
up to O���

Em
mp
� ’ 10�5 corrections, which can be neglected

at our present level of accuracy. Higher order leading logs
of order �nlnn�mZ=mp�, etc., can be summed via a renor-
malization group analysis [4], and O�Z�2� as well as
O�Z2�3� contributions have been computed for high Z
nuclei [10]. They will not be explicitly discussed here
but are included in our final results.

The last three terms in Eq. (4) are induced by weak
axial-vector current loop effects. Their primary source is
the �W box diagram which involves the current correlator

Z
d4xeik	xhp0jT
J���x�A

�
W�0��jpi; (5)

where J�� and A�W are the electromagnetic and weak axial-
vector currents. That product contains a leading vector
current component which contributes to 0� ! 0� nuclear
transition elements. Employing the current algebra formu-
lation, one finds [3]

Box��W�VA �
�

8�

Z 1
0
dQ2 m2

W

Q2 �m2
W

F�Q2�; (6)

where Q is a Euclidean loop momentum integration
variable.

Previous estimates of Eq. (6) employed the operator
product expansion plus lowest order QCD correction to
obtain the leading effect [3,4]

F�Q2� ���!
Q2!1

1

Q2

�
1�

�s�Q2�

�

�
�O

�
1

Q4

�
: (7)

Integrating over the range m2
A � Q2 <1 and combining

with smaller vertex corrections and box diagrams involv-
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ing virtual Z and W bosons, that prescription gave a short-
distance amplitude contribution

�
4�

�
ln
mZ

mA
� Ag

�
; Ag ’ �0:34: (8)

In the numerical estimate, the low-energy cutoff was
chosen to be mA � 1:2 GeV, roughly the mass of the A1

resonance, and the error was estimated by allowing mA to
vary up or down by a factor of 2. Such a heuristic, albeit
crude, procedure led to a 
0:0004 uncertainty in Vud. For
the long-distance �W box diagram contribution, nucleon
electromagnetic and axial-vector dipole form factors were
used to find for neutron decay [4,5]

CBorn�neutron� ’ 0:8gA��n ��p� ’ 0:89; (9)

where gA ’ 1:27 and �n ��p � 0:88 is the nucleon iso-
scalar magnetic moment. In the case of superallowed nu-
clear decays, nuclear quenching modifies CBorn (neutron)
and nucleon-nucleon electromagnetic effects must be in-
cluded [11]. Overall, in the case of a neutron, axial-vector-
induced one-loop RC to the decay rate amounts to
0:67�8�%. Roughly the same uncertainty 
0:08% applies
to superallowed nuclear decays.

To reduce the hadronic uncertainty in RC, we have
carried out a new analysis of the �W box diagram axial-
vector-induced radiative corrections that incorporates the
following F�Q2� improvements [12]: (1) Short distances:
�1:5 GeV�2 � Q2 <1, a domain where QCD corrections
remain perturbative.

F�Q2� �
1

Q2

�
1�

�s�Q
2�MS
�

� C2

��s�Q2�MS
�

�
2

� C3

��s�Q2�MS
�

�
3
�
; (10)

C2 � 4:583� 0:333NF; (11)

C3 � 41:440� 7:607NF � 0:177N2
F; (12)

where NF equals the number of effective quark flavors.
(2) Intermediate distances: �0:823 GeV�2 � Q2 <
�1:5 GeV�2.

F�Q2� �
�1:490

Q2 �m2
�
�

6:855

Q2 �m2
A

�
4:414

Q2 �m2
�0
; (13)

m� � 0:776 GeV; (14)

mA � 1:230 GeV; (15)

m�0 � 1:465 GeV: (16)

(3) Long distances: 0 � Q2 � �0:823 GeV�2.
Integrating the long-distance amplitude up to Q2 �

�0:823 GeV�2, where the integrand matches the interpolat-
ing function, and using an update of the nucleon electro-
magnetic and axial-current dipole form factors, we find

CBorn �neutron� ’ 0:829; (17)
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a reduction from our own previous result in Eq. (9), where
the integration was carried up to Q2 � 1.

Details of the above calculations will be given in a
subsequent publication [12]. Here, we briefly discuss the
basis of our improvements along with the results of the
above analysis and its implications.

The QCD corrections to the asymptotic form of F�Q2�
have been given in Eq. (10) to O��3

s�. The additional terms
are identical (in the chiral limit) to QCD corrections to the
Bjorken sum rule [13] for polarized electroproduction and
can be read off from well-studied calculations [14,15] for
that process. Their validity has been well tested experi-
mentally [16]. The equivalence of the QCD corrections to
all orders (in the chiral limit) can be easily understood. A
chiral transformation d! �5d followed by an isospin
rotation in the current correlator of Eq. (5) converts it
into the vector-vector correlator responsible for the
Bjorken sum rule. Since QCD respects both symmetries
in the chiral limit, the QCD corrections must be identical
for both cases.

The interpolating function in Eq. (13) is motivated by
large N QCD, which predicts it should correspond to an
infinite sum of vector and axial-vector resonances [17]. We
impose three conditions that determine the residues:
(i) The integral of Eqs. (6) and (13) should equal that of
Eqs. (6) and (10) in the asymptotic domain �1:5 GeV�2 �
Q2 � 1, which amounts to a matching requirement be-
tween domains 1 and 2. (ii) In the large Q2 limit, the
coefficient of the 1=Q4 term in the expansion of Eq. (13)
should vanish as required by chiral symmetry [18].
(iii) The interpolator should vanish at Q2 � 0 as required
by chiral perturbation theory. Three conditions limit us to
three resonances.

The Q2 � �0:823 GeV�2 match between domains 2 and
3 was chosen to be the value at which Eq. (13) equals the
integrand of the long-distance contribution. Interestingly,
that matching occurs near the � mass. A novel technical
point in the formulation is that in the evaluation of the
Feynman diagrams associated with the long-distance con-
tributions the integral over the auxiliary variables is carried
out first. This leads to integrands that depend onQ2 and can
therefore be matched with Eq. (13).

Using this approach, we find that at the one-loop elec-
troweak level the last three terms in Eq. (4) are effectively
replaced by 2:82 �

� in the case of neutron decay.
Comparison with Eqs. (4) and (9) in conjunction with
mA � 1:2 GeV, Ag � �0:34 shows that in the new for-
mulation these corrections are reduced by 1:4� 10�4,
which increases Vud by 7� 10�5. The smallness of that
shift is a validation of our previous result [4,6].

More important than the small reduction in the radiative
corrections, our new method provides a more systematic
estimate of the hadronic uncertainties as well as experi-
mental verification of its validity [16]. Allowing for a

10% uncertainty for the CBorn correction in Eq. (17), a

100% uncertainty for the interpolator contribution in the
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�0:823 GeV�2 � Q2 < �1:5 GeV�2 region, and 
0:0001
uncertainty from neglected higher order effects, we find
the total uncertainty in the electroweak radiative correc-
tions is ’ 
0:00038, which leads to a ’
 0:000 19 uncer-
tainty in Vud. That corresponds to more than a factor of 2
reduction in the loop uncertainty from hadronic effects.

Employing our new analysis, we find the improved
relationship between Vud, the neutron lifetime, and gA �
GA=GV ,

jVudj2 �
4908:7�1:9� s

�n�1� 3g2
A�
�neutron�: (18)

Future precision measurements of �n and gA used in con-
junction with Eq. (18) will ultimately be the best way to
determine Vud, but for now it is not competitive [6].

In the case of superallowed (0� ! 0� transitions) nu-
clear � decays, there are a number of corrections, some
nucleus dependent, that must be applied to the ft values.
They are collectively called RC in Eq. (2). To make contact
with previous studies [1,7], we factorize them as follows:

1� RC � �1� 	R��1� 	C��1� ��: (19)

The first two factors are nucleus dependent, while � is
roughly nucleus independent, coming primarily from
short-distance loop effects. The axial-vector contributions
discussed above are included in the product �1� 	R��
�1� ��, where 	R includes long-distance radiative correc-
tions as well as nuclear structure effects. Because we
include leading logs from higher orders as well as some
next-to-leading logs [4,6], the factorization is not exact and
� will exhibit some small nucleus dependence. The uncer-
tainty in 1� 	R comes from Z2�3 and nuclear structure
contributions while a common 
0:03% error in the
Coulomb distortion effect is assigned to 1� 	C.

Employing the corrections given by Hardy and Towner
[7,11] along with the results in [6] and our new analysis
together with Eqs. (2) and (19) given above leads to the RC
and Vud values illustrated in Table I. One finds for the
weighted average

Vud � 0:973 77�11��15��19��superallowed � decays�:

(20)

Comparing with Eq. (3) we see that our analysis gives a
somewhat larger Vud due to a
0:000 07 increase from our
new prescription along with refinements from Ref. [6]
which were not included in Savard et al. [8]. Also,
Savard et al. rounded down in their analysis.

We note that 46V gives a somewhat low value for Vud. It
differs from the average by 2:7
. That particular nucleus
recently underwent a Q value revision [8] which lowered
its Vud. It may be indicating problems with other Q values.
If the other nuclear Q values follow the lead of 46V, we
could see a fairly significant reduction in the weighted
average for Vud. Clearly, remeasurements of Q values
and half-lives of the superallowed decays are highly
warranted.
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TABLE I. Values of Vud implied by various precisely measured superallowed nuclear beta decays. The ft values are taken from
Savard et al. [8]. Uncertainties in Vud correspond to (1) nuclear structure and Z2�3 uncertainties added in quadrature with the ft error
[10,11], (2) a common error assigned to nuclear coulomb distortion effects [11], and (3) a common uncertainty from quantum loop
effects. Only the first error is used to obtain the weighted average.

Nucleus ft (s) 1� RC Vud
10C 3039.5(47) 1.035 42(36)(30)(38) 0.973 81(77)(15)(19)
14O 3043.3(19) 1.034 41(52)(30)(38) 0.973 68(39)(15)(19)
26Al 3036.8(11) 1.035 82(30)(30)(38) 0.974 06(23)(15)(19)
34Cl 3050.0(12) 1.031 21(38)(30)(38) 0.974 12(26)(15)(19)
38K 3051.1(10) 1.030 99(44)(30)(38) 0.974 04(26)(15)(19)
42Sc 3046.8(12) 1.034 03(54)(30)(38) 0.973 30(32)(15)(19)
46V 3050.7(12) 1.033 76(59)(30)(38) 0.972 80(34)(15)(19)
50Mn 3045.8(16) 1.033 57(67)(30)(38) 0.973 67(41)(15)(19)
54Co 3048.4(11) 1.032 57(75)(30)(38) 0.973 73(40)(15)(19)

Weighted average 0.973 77(11)(15)(19)
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Employing the value of Vud in Eq. (20), the Kl3 average
[19] for Vus

Vus � 0:2257�9�
0:961=f��0��; Kl3 average; (21)

with f��0� � 0:961�8� [20] and jVubj2 ’ 1� 10�5 leads to
the unitarity test

jVudj2�jVusj2�jVubj2�0:9992�5�Vud�4�Vus�8�f��0�: (22)

Good agreement with unitarity (which requires the sum to
be 1) is found, with the dominant uncertainty coming now
from the theory error in the Kl3 form factor f��0�.
Equation (22) provides an important test of the standard
model at the quantum loop level and a constraint on new
physics beyond the standard model at the
0:1% level. We
note, however, that some other calculations [19,21] of
f��0� and studies of other strangeness changing decays
[22] suggest a lower Vus value. Combined with further Q
value revisions possibly leading to a smaller Vud, they
could cause a significant reduction in Eq. (22). A future
violation of unitarity is still possible. However, for it to be
significant, the theoretical uncertainty in f��0� must be
further reduced.
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