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Quantum Evaporation of a Naked Singularity
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We investigate here quantum effects in gravitational collapse of a scalar field model which classically
leads to a naked singularity. We show that nonperturbative semiclassical modifications near the singu-
larity, based on loop quantum gravity, give rise to a strong outward flux of energy. This leads to the
dissolution of the collapsing cloud before the singularity can form. Quantum gravitational effects thus
censor naked singularities by avoiding their formation. Further, quantum gravity induced mass flux has a
distinct feature which may lead to a novel observable signature in astrophysical bursts.
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Naked singularities are one of the most exotic objects
predicted by classical general relativity. Unlike their black
hole siblings, they can be in principle directly observed by
an external observer. There have been many investigations
which show that given the initial density and pressure
profiles for a matter cloud, there are classes of collapse
evolutions that lead to naked singularity formation (see,
e.g., [1] for some recent reviews), subject to an energy
condition and astrophysically reasonable equations of state
such as dust, perfect fluids, and such others. This has led to
extensive debates on their existence, with a popular idea
being cosmic censorship conjectures which forbid classical
nakedness [2]. Since naked singularities originate in the
regime where classical general relativity is expected to be
replaced by quantum gravity, it has remained an outstand-
ing problem whether a quantum theory of gravity resolves
their formation. Also, with the lack of observable signa-
tures from the Planck regime, naked singularities could in
fact be a boon for a quantum theory of gravity. Because, the
singularity being visible, any quantum gravitational signa-
ture originating in the ultrahigh curvature regime near a
classical singularity can in principle be observed, thus
providing us a rare test for quantum gravity.

One of the nonperturbative quantizations of gravity is
loop quantum gravity [3], whose key predictions include
the Bekenstein-Hawking entropy formula [4]. Its applica-
tion to symmetry reduced mini-superspace quantization of
homogeneous spacetimes is called loop quantum cosmol-
ogy [5], whose success includes resolution of the big bang
singularity [6], initial conditions for inflation [7,8], and
possible observable signatures in cosmic microwave back-
ground radiation [8]. These techniques have also been
applied to resolve black hole singularity in a scalar field
collapse scenario [9].

Since the dynamics of a generic collapse is very com-
plicated and tools to address such a problem in quantum
gravity are still under development, it is useful to work
with a simple collapse scenario as of a scalar field. It serves
as a good toy model to gain insights on the role of quantum
gravity effects at the late stages of gravitational collapse.
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Existence of naked singularities in these models is well
known [10] and one of the simplest setting is to consider an
initial configuration of a homogeneous and isotropic scalar
field � � ��t� with a potential V��� [given by Eq. (6)]
and the canonical momentum P�. In this case it has been
shown that the fate of the singularity being naked or
covered depends on the rate of gravitational collapse
[11]. For an appropriately chosen potential, formation of
trapped surfaces can be avoided even as the collapse pro-
gresses, resulting in a naked singularity with an outward
energy flux, in principle observable. Since the interior of
homogeneous scalar field collapse is described by a
Friedmann-Robertson-Walker (FRW) metric, techniques
of loop quantum cosmology can be used to investigate
the way quantum gravity modifies the collapse.

Let us consider the classical collapse of a homogeneous
scalar field ��t� with potential V��� and the canonical
momentum for the marginally bound �k � 0� case. The
interior metric is given by

ds2 � �dt2 � a2�t��dr2 � r2d�2� (1)

with classical energy density and pressure of the scalar
field,

��t� � _�2=2� V���; p�t� � _�2=2� V���: (2)

The dynamical evolution of the system is obtained from the
Einstein equations which yield [11]

_R 2R � F�t; r�; � � F;r=�aR
2; p � � _F=�R2 _R:

(3)

Here � � 8�G, and F�t; r� � ��=3���t�r3a3 has the inter-
pretation of the mass function of the collapsing cloud, with
F � 0, and R�t; r� � ra�t� is the area radius of a shell
labeled by comoving coordinate r. In a continual collapse
the area radius of a shell at a constant value of comoving
radius r decreases monotonically. The spacetime region is
trapped or otherwise, depending on the value of the mass
function. If F is greater (less) than R, the region is trapped
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(untrapped). The boundary of the trapped region is given
by F � R.

The collapsing interior can be matched at some suitable
boundary r � rb to a generalized Vaidya exterior geome-
try, given as [12],

ds2 � ��1� 2M�rv; v�=rv�dv
2 � 2dvdrv � r

2
vd�2:

(4)

The Israel-Darmois conditions then lead to [11,12]
rba�t� � rv�v�, F�t; rb� � 2M�rv; v�, and

M�rv; v�;rv � F=2rba� r2
ba �a: (5)

The form of the potential that leads to a naked singu-
larity is determined as follows. The energy density of the
scalar field can be written in a generic form as � �
ln�4a�n, where n > 0 and l is a proportionality constant.
Using the energy conservation equation, this leads to the
pressure p � ��n� 3�=3�l�n�4�a�n. On substituting Eq. (2)
in these we obtain [11]

� � �
���������
n=�

p
lna; V��� � �1� n=6�ln�4e

�����
�n
p

�: (6)

Then it is easily seen that F=R � ��=3�ln�4a2�nr2. Thus
in the collapsing phase as a ���! 0, whether or not the
trapped surfaces form is determined by the value of n. It
is straightforward to check that for 0< n< 2, if no trapped
surfaces exist initially, then no trapped surfaces would
form till the epoch a�t� � 0 [11], with a�t� � �1�
nt=2

���
3
p
�2=n.

The absence of trapped surfaces is accompanied by a
negative pressure implying that for a constant value of the
comoving coordinate r, _F is negative and so the mass
contained in the cloud of that radius keeps decreasing.
This leads to a classical outward energy flux. As the
collapse proceeds, the scale factor vanishes in finite time
and physical densities blow up, leading to a naked singu-
larity. Since no trapped surfaces form during collapse, the
outward energy flux shall in principle be observable.
However, near the singularity when energy density is close
to Planckian values, this classical picture has to be modi-
fied and we need to investigate the scenario incorporating
quantum gravity modifications to the classical dynamics.

Let us hence consider the nonperturbative semiclassical
modifications based on loop quantum gravity for the inte-
rior. The underlying geometry for the FRW spacetime in
loop quantum cosmology is discrete, and both the scale
factor and the inverse scale factor operators have discrete
eigenvalues [13]. In particular, there exists a critical scale
a	 �

�����������
j�=3

p
lP below which the eigenvalues of the inverse

scale factor become proportional to the positive powers of
scale factor. Here � 
 0:2375 is the Barbero-Immirzi pa-
rameter [4], lP is the Planck length, and j is a half-integer
free parameter which arises because the inverse scale
factor operator is computed by tracing over SU(2) holon-
omies in an irreducible spin j representation. The value of
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this parameter is arbitrary and shall be constrained by
phenomenological considerations.

The change in behavior of the classical geometrical
density (1=a3) for scales a & a	, can be well approximated
by [7]

dj�a� � D�q�a�3; q :� a2=a2
	; a	 :�

�����������
j�=3

q
lP;

(7)

with

D�q� � �8=77�6q3=2f7��q� 1�11=4 � jq� 1j11=4�

� 11q��q� 1�7=4 � sgn�q� 1�jq� 1j7=4�g6:

(8)

For a� a	, dj / �a=a	�15a�3 and for a� a	 it behaves
classically with dj 
 a�3. The scale at which transition in
the behavior of the geometrical density takes place is
determined by the parameter j.

At the fundamental level the dynamics in the loop
quantum regime is discrete; however, recent investigations
pertaining to the evolution of coherent states have shown
that for scales a0 �

����
�
p

lP & a & a	 �
�����������
j�=3

p
lP, dynam-

ics can be described by modifications to Friedmann dy-
namics on a continuous spacetime [14] with the modified
matter Hamiltonian

H � � dj�a�P2
�=2� a3V��� (9)

and the modified Friedmann equation

_a 2=a2 � ��=3�� _�2=2D� V����; (10)

which is obtained by the vanishing of the total Hamiltonian
constraint and the Hamilton’s equations: _� � dj�a�P�,
_P� � �a3V;���� [7]. These also lead to the modified

Klein-Gordon equation

��� �3 _a=a� _D�q�=D�q�� _��D�q�V;���� � 0: (11)

Since at classical scales (a� a	) D 
 1, the modified
dynamical equations reduce to the standard Friedmann
dynamical equations. For scales a & a	, the _� term acts
like a frictional term for a collapsing phase. We note that
since semiclassical modifications for inhomogeneous case
are still not known, we cannot do a complete quantum
analysis of interior and exterior. The exterior is assumed
to remain classical. Further, as a continuous spacetime can
be approximated till scale factor a0, the matching of in-
terior and exterior spacetimes remains valid during the
semiclassical evolution.

The modified energy density and pressure of the scalar
field in the semiclassical regime can be similarly obtained
from the eigenvalues of the density operator and using the
stress-energy conservation equation [15]

�eff � dj�a�H� � _�2=2�D�q�V��� (12)
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FIG. 1. Evolution of the area radius with time. The classical
evolution (dashed curve) leads to naked singularity in finite time
whereas in semiclassical evolution (solid curve) it is avoided.
Inset: evolution of energy density (in Planck units) with time.
The parameters chosen are n � 1:9 and j � 100.
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and

peff �

�
1�

2

3

1

� _a=a�

_D�q�
D�q�

� _�2

2
�D�q�V���

�
_D�q�

3� _a=a�
V���: (13)

It is then straightforward to check that peff is generically
negative for a & a	, and for a� a	 it becomes very
strong. For example, at a
 a0, peff 
 �9�eff . This is
much stronger than its classical counterpart p �
��n� 3�=3�� with 0< n< 2. Thus, we expect a strong
burst of outward energy flux in the semiclassical regime.
Further, for a� a	, D�q� � 1 and the Klein-Gordon
equation yields _� / a12. Hence, from Eq. (12), we easily
see that the effective density, instead of blowing up, be-
comes extremely small and remains finite.

The modified mass function of the collapsing cloud can
be evaluated using Eqs. (3) and (10),

F � ��=3��d�1
j

_�2=2� a3V����r3: (14)

In the regime a
 a0, d�1
j

_�2 becomes proportional to a12,
the potential term becomes negligible and thus the mass
function becomes vanishingly small at small scale factors.

The picture emerging from loop quantum modifications
to collapse is thus following. (i) Before the area radius of
the collapsing shell reaches R	 � ra	 at t � t	, collapse
proceeds as per classical dynamics and as smaller scale
factors are approached _� and the energy density � / a�n

increase. The mass function is proportional to an�3 and (as
0< n< 2) it decreases with decreasing scale factor so
there is a mass loss to the exterior, which is also understood
from existence of negative classical pressure. (ii) As the
collapsing cloud reaches R	, the geometric density classi-
cally given by a�3, modifies to dj and the dynamics is
governed by the modified Friedmann and Klein-Gordon
equations. The scalar field which experienced antifriction
in the classical regime, now experiences friction leading to
a decrease of _�. (iii) The slowing down of � decreases the
rate of collapse and the formation of singularity is delayed.
Eventually, when the scale factor becomes smaller than a0,
this leads to a breakdown of the continuum spacetime
approximation and semiclassical dynamics. Discrete quan-
tum geometry emerges at this scale [14] and the dynamics
can only be described by quantum difference equation. The
naked singularity is thus avoided till the scale factor at
which a continuous spacetime exists.

We show the evolution of area radius in time as collapse
proceeds in Fig. 1. The semiclassical evolution (solid
curve) closely follows classical trajectory (dashed curve)
until the time t	. Within a finite time after t	, the classical
collapse leads to a vanishing R and naked singularity.
However, the area radius never vanishes in the loop modi-
fied semiclassical dynamics and the naked singularity does
not form as long as the continuum spacetime approxima-
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tion holds. The inset of Fig. 1 shows the evolution of
energy density in Planck units. Classical energy density
(dashed curve) blows up, whereas it remains finite and in
fact decreases in the semiclassical regime.

The phenomena of delay and avoidance of the naked
singularity in continuous spacetime is accompanied by a
burst of matter to the exterior. If the mass function at scales
a� a	 is Fi and its difference with mass of the cloud for
a < a	 is �F � Fi � F, then the mass loss can be com-
puted as

�F
F�ai�

�

�
1�

�effd
�1
j

ln�4a3�n
i

�
: (15)

For a < a	, as the scale factor decreases, the energy den-
sity and mass in the interior decrease and the negative
pressure strongly increases. This leads to a strong burst
of matter. The absence of trapped surfaces enables the
quantum gravity induced burst to propagate via the gener-
alized Vaidya exterior to an observer at infinity. The evo-
lution of the mass function is shown in Fig. 2. In the
semiclassical regime, �F=Fi approaches unity very rap-
idly. This feature is independent of the choice of parameter
j. The choice of potential causes mass loss to the exterior in
classical collapse also, but it is much smaller (and in any
case the classical description cannot be trusted at energy
densities greater than Planck, when we must consider
quantum effects as above).

Interestingly, for a given collapsing configuration, the
scale at which the strong outward flux initiates depends on
the loop parameter j which controls a	. If j is large then
burst occurs at an earlier area radius and vice versa. The
inset of Fig. 2 shows the mass loss ratio for different values
of j. For all choices, �F=Fi ! 1, but the outgoing flux
profile changes. The loop quantum burst has a distinct
2-3
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FIG. 2. Evolution of mass function with area radius for the
same parameters as in Fig. 1. Loop quantum evolution (solid
curve) leads to dissolution of all the mass of the collapsing shell.
Dashed curve shows the classical trajectory. Inset: mass loss
profile for j � 106 (outer), j � 5:0� 105 (middle), and j � 105

(inner).
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signature: at a
 a	 the flux decreases for a short period
and then rapidly increases. Since the causal structure of
classical spacetime is such that trapped surface formation
is avoided, this quantum gravitational signature can be in
principle observed by an external observer as a slight
dimming and subsequent brightening of the collapsing
star. This peculiar phenomena is directly related to the
peak in the function dj�a�, and depends solely on the value
of parameter j. If we compare this to other phenomeno-
logical applications [7–9], this effect could not be masked
by the role of other loop quantum parameters in a more
general setting. This phenomena is thus a direct probe to
measure j and an observer can estimate the loop quantum
parameter j by observing the flux profile of the burst based
on this mechanism and measuring the variation in lumi-
nosity of the collapsing cloud.

During such a burst most of the mass is ejected and this
may dissolve the singularity. Thus nonperturbative semi-
classical modifications may not allow formation of naked
singularity as the collapsing cloud evaporates away due to
supernegative pressures in the late regime. It has been
demonstrated that these supernegative pressures would
exist for arbitrary matter configurations [15], which im-
plies that results obtained here would hold even in a more
general setting [16]. Loop quantum effects then imply a
quantum gravitational cosmic censorship, alleviating the
naked singularity problem. We note that the semiclassical
effects do not show that the singularity is absent, it is only
avoided until scale factor a0, below which the semiclassi-
cal dynamics and matching may breakdown. If, for a given
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choice of initial data, semiclassical dynamics is unable to
completely dissolve the singularity, the final fate of naked
singularity must be decided by using full quantum evolu-
tion. Even in such cases we have valuable insights from
semiclassical loop quantum effects with the possibility of
phenomenologically constraining the j parameter.

In the toy model considered, we showed that the classi-
cal outcome and evolution of collapse is radically altered
by the nonperturbative modifications to the dynamics. Our
considerations are of course within the mini-superspace
setting, and the general case of inhomogeneities and an-
isotropies remains open. However, the possibility of such
observable signatures in astrophysical bursts, as originat-
ing from the quantum gravity regime near singularity is
intriguing, indicating that the gravitational collapse sce-
nario can be used as probes to test quantum gravity models.
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