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Formation and Evaporation of Nonsingular Black Holes
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Regular (nonsingular) space-times are given that describe the formation of a (locally defined) black
hole from an initial vacuum region, its quiescence as a static region, and its subsequent evaporation to a
vacuum region. The static region is Bardeen-like, supported by finite density and pressures, vanishing
rapidly at large radius and behaving as a cosmological constant at small radius. The dynamic regions are
Vaidya-like, with ingoing radiation of positive-energy flux during collapse and negative-energy flux
during evaporation, the latter balanced by outgoing radiation of positive-energy flux and a surface pressure
at a pair creation surface. The black hole consists of a compact space-time region of trapped surfaces, with
inner and outer boundaries that join circularly as a single smooth trapping horizon.
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FIG. 1 (color online). Penrose diagram of a regular nonext-
reme black hole, to be identified vertically with isometric
regions.
Introduction.—Black holes, predicted by Einstein grav-
ity, appear to exist in the Universe. The singularities that
were also predicted to form inside them [1], however, are
generally regarded as indicating the breakdown of the
theory, requiring modifications that presumably include
quantum theory. A first step in this direction, quantum field
theory on a stationary black-hole background, predicted
Hawking radiation [2]. The ingoing radiation has negative-
energy flux, which contradicts the assumptions of the
singularity theorems and, in a semiclassical approxima-
tion, causes the black hole to shrink. In the usual picture
[3], the black hole shrinks until the central singularity is
reached. However, if the singularity does not exist, such a
picture cannot be correct [4,5].

Regular (i.e., nonsingular) black holes have sometimes
been considered, dating back at least to Bardeen [6]. One
can find metrics that are spherically symmetric, are static,
are asymptotically flat, and have regular centers, as well as
for which the resulting Einstein tensor is physically rea-
sonable, satisfying the weak energy condition and having
components that are bounded and fall off appropriately at
large distance. The simplest causal structure is similar to
that of a Reissner-Nordström black hole, with the internal
singularities replaced by regular centers (Fig. 1). Such
space-times have been dismissed as unphysical, due to
the presence of a Cauchy horizon, but if such a black
hole evaporates, the Cauchy horizon is no more real than
the event horizon, as examples show.

Imagine removing astrophysically irrelevant regions to
the past and future of two consecutive advanced times
(Fig. 1), then adjoining a past that describes gravitational
collapse and a future that describes evaporation. The static
region contains inner and outer horizons that no longer
have global significance, but still have local significance as
trapping horizons [7]. The key issue is how the trapping
horizons develop, which has been predicted on general
principles [5]. In this Letter, concrete models are given
for the collapse and evaporation phases, using Vaidya-like
regions [8] with ingoing or outgoing radiation.
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Regular static black holes.—Consider static, spherically
symmetric metrics of the form

ds2 � r2dS2 � dr2=F�r� � F�r�dt2; (1)

where t is the static time, r is the area radius, and dS2 �
d�2 � d�2sin2�. A surface has area 4�r2, is trapped if
F�r�< 0, and is untrapped if F�r�> 0. Trapping horizons,
in this case also Killing horizons, are located at the zeros
F�r� � 0, and there is a standard procedure to match
regions across such horizons [9]. For an asymptotically
flat space-time with total mass m,

F�r� � 1� 2m=r as r! 1: (2)

Similarly, flatness at the center requires
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F�r� � 1� r2=l2 as r! 0; (3)

where l is a convenient encoding of the central energy
density 3=8�l2, assumed positive. A sketch of F�r� indi-
cating where it might dip below zero (Fig. 2) shows that
there will be a range of parameters for which there is no
black hole, and that the simplest black-hole cases will
generically have an inner and outer Killing horizon, the
two cases separated by an extreme black hole with degen-
erate Killing horizon.

It can be shown that, for a metric g of the form (1) and
(3), the Einstein tensor has the cosmological-constant form

G���g as r! 0; � � 3=l2: (4)

Thus, there is an effective cosmological constant at small
distances, with Hubble length l. Such behavior has been
proposed previously by Sakharov [10] as the equation of
state of matter at high density and by Markov and others
[11] based on an upper limit on density or curvature, to be
ultimately justified by a quantum theory of gravity. Since l
gives the approximate length scale below which such
effects dominate, one might expect l to be the Planck
length or of the same order, though larger length scales
are not excluded.

A minimal model.—For definiteness, take a particularly
simple metric satisfying the above conditions:

F�r� � 1�
2mr2

r3 � 2l2m
; (5)

where �l; m� are constants that will be assumed positive.
This is similar to the Bardeen black hole, reduces to the
Schwarzschild solution for l � 0, and is flat for m � 0.
Poisson and Israel [12] derived an equivalent form of grr �
F (without fixing gtt) based on a simple relation between
vacuum energy density and curvature.

Elementary analysis of the zeros of F�r� reveals a criti-
cal massm� � �3

���
3
p
=4�l and radius r� �

���
3
p
l such that, for

r > 0, F�r� has no zeros if m<m�, one double zero at r �
r� if m � m�, and two simple zeros at r � r� if m>m�
(Fig. 2). These cases therefore describe, respectively, a
regular space-time with the same causal structure as flat
space-time, a regular extreme black hole with degenerate
Killing horizon, and a regular nonextreme black hole with
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FIG. 2 (color online). The metric function F � grr, whose
sign determines gravitational trapping, for fixed core radius l
and different total masses m.
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both outer and inner Killing horizons, located at r� 	 2m
and r� 	 l for m
 m� (Fig. 1). The horizon radii r�
determine the mass (Fig. 3)

m�r�� �
1
2 r

3
�

r2
� � l

2 : (6)

Note the existence of a mass gap: such black holes cannot
form with massm<m�. Also, the inner horizon has radius
r� > l, which is very close to l for all but the smallest
masses. In this sense, the black-hole core has a universal
structure.

If the Einstein equation G � 8�T is used to interpret
components of the energy tensor T, these metrics are
supported by density �Ttt , radial pressure Trr , and trans-
verse pressure T�� � T�� given by

Gt
t � Gr

r � �
12l2m2

�r3 � 2l2m�2
; (7)

G�
� � G�

� �
24�r3 � l2m�l2m2

�r3 � 2l2m�3
: (8)

They fall off very rapidly, O�r�6�, at large distance. In
terms of the energy E defined by

grr � 1� 2E=r; (9)

one finds the energy density �Ttt � �3l2=2���E=r3�2, pro-
portional to the square of the curvature E=r3. Poisson and
Israel [12] assumed such proportionality as a property of
vacuum energy density; then the component dE=dr �
�4�r2Ttt of the Einstein equation implies grr equivalent
to (5).

Adding radiation.—Next rewrite the static space-times
in terms of advanced time

v � t�
Z dr
F�r�

(10)

so that

ds2 � r2dS2 � 2dvdr� Fdv2: (11)

Now allow the mass to depend on advanced time, m�v�,
defining F�r; v� by the same expression (5). Then the
density �Tvv , radial pressure Trr , and transverse pressure
T�� have the same form (7) and (8), but there is now an
additional independent component, radially ingoing en-
ergy flux (or energy-momentum density) Trv given by
m
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FIG. 3. Horizon mass-radius relation: a pair of horizons ap-
pears when mass m exceeds critical mass m�.
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Gr
v �

2r4m0

�r3 � 2l2m�2
; (12)

where m0 � dm=dv. This describes pure radiation, recov-
ering the Vaidya solutions for l � 0 and at large radius. In
the Vaidya solutions, the ingoing radiation creates a central
singularity, but in these models, the center remains regular,
with the same central energy density given by (3). It seems
that the effective cosmological constant protects the core.

The ingoing energy flux is positive ifm is increasing and
negative if m is decreasing. A key point is that trapping
horizons still occur where the invariant grr � F�r; v� van-
ishes [7]. Then one can apply the previous analysis to
locate the trapping horizons in �v; r� coordinates parame-
trized bym, given bym�r�� in (6) and a mass profilem�v�,
qualitatively, by inspecting Figs. 3 and 4.

Ingoing radiation.—One can now model formation and
evaporation of a static black-hole region. Introduce six
consecutive advanced times va < vb < � � �< vf and con-
sider smooth profiles of m�v�, meaning m0�v� at least
continuous, such that (Fig. 4)

8 v 2 ��1; va�:m�v� � 0; (13)

8 v 2 �va; vc�:m
0�v�> 0; (14)

8 v 2 �vc; vd�:m�v� � m0 >m�; (15)

8 v 2 �vd; vf�:m0�v�< 0; (16)

8 v 2 �vf;1�:m�v� � 0: (17)

Then

9 vb 2 �va; vc�:m�vb� � m�; (18)

9 ve 2 �vd; vf�:m�ve� � m�: (19)

These transition times mark the appearance and disappear-
ance of a pair of trapping horizons: for v < vb and v > ve,
there is no trapping horizon, while for vb < v < ve, there
are outer and inner trapping horizons, in the sense of the
author’s local classification [7]. These horizons join
smoothly at the transitions and therefore unite as a single
smooth trapping horizon enclosing a compact region of
trapped surfaces (Fig. 5, for r < r0).

Outgoing radiation.—Thus far, only the ingoing
Hawking radiation has been modeled, since outgoing ra-
m
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FIG. 4. A mass profile m�v� in advanced time v.
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diation does not enter the equation of motion of the trap-
ping horizon; in terms of retarded time u, Tvv and Tuv
enter, but Tuu does not [7]. Outgoing Hawking radiation
will now be modeled by adapting an idea of Hiscock [13]:
select a certain radius r0 > 2m0 outside the black hole, and
adopt the above negative-energy radiation only inside that
radius, balanced by outgoing positive-energy radiation out-
side that radius, with the same mass profile (Fig. 5). This is
an idealized model of pair creation of ingoing particles
with negative energy and outgoing particles with positive
energy, locally conserving energy.

In more detail, consider an outgoing Vaidya-like region

ds2 � r2dS2 � 2dudr� Fdu2 (20)

with F�r; u� as before (5), with m replaced by a mass
function n�u�. Fix the zero point of the retarded time u
so that r � r0 corresponds to u � v. Now take the above
model only for v < vd (13)–(15). For v > vd, keep the
profiles (16) and (17) for r < r0, but for r > r0, take an
outgoing Vaidya-like region with

8 u < vd:n�u� � m0; (21)

8 u > vd:n�u� � m�u�: (22)
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FIG. 5 (color online). Penrose diagram of formation and
evaporation of a regular black hole in the given models.
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Then there is a static region with total massm0 for v > vd,
u < vd, and a flat region for v > vf, u > vf. Since the
ingoing and outgoing radiation has no net energy but a net
outward momentum, one might expect the pair creation
surface r � r0 to have a surface layer with no surface
energy density but surface tension � < 0. This is confirmed
using the Israel formalism [14], yielding

�
16��grr�3=2

r
� � �Grr � �

4r4m0

�r3 � 2l2m�2
(23)

at r � r0, vd < v < vf.
The whole picture is given in Fig. 5. Action begins at

v � va, and a black hole begins to form at v � vb, has
collapsed completely at v � vc to a static state with mass
m0, begins to deflate at v � vd, and eventually evaporates
at v � ve, leaving flat space finally after v � vf, u � vf.
There is no singularity and no event horizon.

Remarks.—A trapping horizon with both inner and outer
sections typically develops in numerical simulations of
binary black-hole coalescence, in analytical examples of
gravitational collapse such as Oppenheimer-Snyder col-
lapse and according to general arguments [15]. A key point
here is that the inner horizon never reaches the center,
where a singularity would form [5]. This is compatible
with the classical singularity theorems [1], which make
assumptions that are already not satisfied by a Bardeen
black hole, such as the strong energy condition. The
negative-energy nature of ingoing Hawking radiation
shows that such theorems do not apply to a black hole
that might someday begin to evaporate.

In contrast to the usual picture [3], the end point v � ve
of evaporation, defined locally by the disappearance of
trapped surfaces, occurs when the outer and inner sections
of the trapping horizon reunite. The subsequent time scale
until the effective cessation of particle production at v �
vf can be expected to be of the same order as l. Another
logical possibility is that the inner and outer horizons
approach each other asymptotically, forming the horizon
of an extreme black hole with m � m�, but such a deli-
cately balanced situation would require justification.

The possibility of a circular trapping horizon has, in fact,
been conjectured before [16]. Since there is no event
horizon, long accepted as the defining property of a black
hole, it seems necessary to stress that the static region looks
just like a black hole over time scales that can be arbitrarily
long. Thus, it should be regarded as a black hole by any
practical definition, as in the local, dynamical paradigm for
black holes in terms of trapping horizons [7]. The non-
existence of an event horizon for a black hole that even-
tually evaporates seems to have been recently accepted by
its most influential proponent [17].

Most discussions of black-hole evaporation mention a
certain I-word, as a paradox, problem, or puzzle. The
above space-times, regular as well as with the causal
structure of flat space-time, show that this word need not
03110
be mentioned. To paraphrase an old gravitational adage:
what goes in, must come out.
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