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Staggered Ladder Spectra
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We exactly solve a Fokker-Planck equation by determining its eigenvalues and eigenfunctions: we
construct nonlinear second-order differential operators which act as raising and lowering operators,
generating ladder spectra for the odd- and even-parity states. The ladders are staggered: the odd-even
separation differs from even-odd. The Fokker-Planck equation corresponds, in the limit of weak damping,
to a generalized Ornstein-Uhlenbeck process where the random force depends upon position as well as
time. The process describes damped stochastic acceleration, and exhibits anomalous diffusion at short
times and a stationary non-Maxwellian momentum distribution.
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There are only few physically significant systems with
ladder spectra (exactly evenly spaced energy levels).
Examples are the harmonic oscillator and the Zeeman-
splitting Hamiltonian. In this Letter we introduce and solve
a family of eigenvalue problems which occur in an exten-
sion of a classic problem in the theory of diffusion, the
Ornstein-Uhlenbeck process [1]. Our system is also closely
related to a model for stochastic acceleration, introduced
by Sturrock [2] in the context of acceleration of charged
particles by interstellar fields [3], and analyzed by
Golubovic et al. [4] (see also Rosenbluth [5]). Our eigen-
value problems have ladder spectra, but they differ from
the usual examples in that their spectra consist of two
ladders which are staggered; the eigenvalues for eigenfunc-
tions of odd and even symmetry do not interleave with
equal spacings. We introduce a new type of raising and
lowering operators in our solution, which are nonlinear
second-order differential operators. Our generalized
Ornstein-Uhlenbeck systems exhibit anomalous diffusion
at short times, and non-Maxwellian velocity distributions
at equilibrium; we obtain exact expressions which are
analogous to results obtained for the standard Ornstein-
Uhlenbeck process.

Ornstein-Uhlenbeck processes.—Before we discuss our
extension of the Ornstein-Uhlenbeck process, we describe
its usual form. This considers a particle of momentum p
subjected to a rapidly fluctuating random force f�t� and
subject to a drag force��p, so that the equation of motion
is _p � ��p� f�t�. The random force has statistics
hf�t�i � 0, hf�t�f�t0�i � C�t� t0� (angular brackets denote
ensemble averages throughout). If the correlation time � of
f�t� is sufficiently short (��� 1), the equation of motion
may be approximated by a Langevin equation: dp �
��pdt� dw, where the Brownian increment dw has
statistics hdwi � 0 and hdw2i � 2D0dt. The diffusion
constant is D0 �

1
2

R
1
�1 dthf�t�f�0�i. This problem is dis-

cussed in many textbooks (for example [6]); it is easily
shown that the variance of the momentum (with the particle
starting at rest) is
06=96(3)=030601(4)$23.00 03060
hp2�t�i � �1� exp��2�t��D0=�; (1)

that the equilibrium momentum distribution is Gaussian,
and that the particle (of mass m) diffuses in space with
diffusion constant Dx � D0=m

2�2.
In many situations the force on the particle will be a

function of its position as well as of time. Here we are
concerned with what happens in this situation when the
damping is weak. We consider a force f�x; t� which has
mean value zero, and a correlation function hf�x; t� 	
f�x0; t0�i � C�x� x0; t� t0�. The spatial and temporal cor-
relation scales are � and �, respectively. If the momentum
of the particle is large compared to p0 � m�=�, then the
force experienced by the particle decorrelates more rapidly
than the force experienced by a stationary particle. Thus, if
the damping � is sufficiently weak that the particle is
accelerated to a momentum large compared to p0, the
diffusion constant characterizing fluctuations of momen-
tum will be smaller than D0. The impulse of the force on a
particle which is initially at x � 0 in the time from t � 0 to
t � �t is

�w �
Z �t

0
dt f�pt=m; t� �O��t2�: (2)

If �t is large compared to � but small compared to 1=�, we
can estimate h�w2i � 2D�p��t, where

D�p� �
1

2

Z 1
�1

dtC�pt=m; t�: (3)

In the context of undamped stochastic acceleration, a
closely related expression was given in [2], and analyzed
in [4,5]. When p� p0 one recovers D�p� � D0. When
p
 p0, we can approximate (3) to obtain

D�p� �
D1p0

jpj
�O�p�2�; D1 �

m
2p0

Z 1
�1

dXC�X; 0�:

(4)

If the force is the gradient of a potential, f�x; t� �
@V�x; t�=@x, then D1 � 0. In this case, expanding the
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FIG. 1. The spectrum of Ĥ (right) is the sum of two equally
spaced (ladder) spectra ��n and ��n shifted with respect to each
other (left).
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correlation function (assumed to be sufficiently differen-
tiable) in (3) in its second argument gives D�p� �
D3p

3
0=jp

3j, where D3 may be expressed as an integral
over the correlation function of V�x; t�. To summarize:
the momentum diffusion constant is a decreasing function
of momentum, such that D�p� � jpj�1 for a generic ran-
dom force, or D�p� � jpj�3 for a gradient force.

Fokker-Planck equation.—The probability density for
the momentum, P�p; t�, satisfies a Fokker-Planck equation.
Following the approach in [6], we obtain @tP � @p��pP�
D�p�@pP�. A related equation (without the damping term)
was introduced in [2,4,5] and applied to the stochastic
acceleration of particles in plasmas [with subsequent con-
tributions concentrating on refining models for D�p�, see,
for example, [7,8]]. In the following we obtain exact
solutions to the Fokker-Planck equation in the cases where
D�p� � D1p0=jpj (which we consider first) and D�p� �
D3p

3
0=jpj

3 (treated in the same way and discussed at the
end of the Letter).

Introducing dimensionless variables [t0 � �t and z �
p��=p0D1�

1=3], the Fokker-Planck equation for the case
where D�p� / jpj�1 becomes

@t0P � @z�zP� jzj�1@zP� � F̂P: (5)

It is convenient to transform the Fokker-Planck operator F̂
to a Hermitian form, with Hamiltonian

Ĥ � P�1=2
0 F̂P1=2

0 � 1=2� jzj3=4� @zjzj�1@z; (6)

where P0�z� / exp��jzj3=3� is the stationary solution sat-
isfying F̂P0 � 0. We solve the diffusion problem by con-
structing the eigenfunctions of the Hamiltonian operator.
In the following we make free use of the Dirac notation [9]
of quantum mechanics to write the equations in a compact
form and to emphasize their structure.

Summary of principal results.—We start by listing our
results [for the case of random forcing, where D�p� /
1=jpj]. We construct the eigenvalues �n and eigenfunc-
tions  n�z� of the operator Ĥ. We identify raising and
lowering operators Â� and Âwhich map one eigenfunction
to another with, respectively, two more or two fewer nodes.
We use these to show that the spectrum of Ĥ consists of
two superposed equally spaced spectra (ladder spectra) for
even and odd parity states:

��n ��3n; ��n ���3n� 2�; n� 0; . . . ;1: (7)

The spectrum of the Hamiltonian (6) is displayed on the
right-hand side of Fig. 1. It is unusual because the odd-even
step is different from the even-odd step, due to the singu-
larity of the Hamiltonian at z � 0. Our raising and low-
ering operators allow us to obtain matrix elements required
for calculating expectation values, such as the variance of
the momentum for a particle starting at rest at t � 0:

hp2�t�i �
�
p0D1

�

�
2=3 37=6��2=3�

2�
�1� e�3�t�2=3: (8)
03060
This is reminiscent of Eq. (1) for the standard Ornstein-
Uhlenbeck process, however (8) exhibits anomalous diffu-
sion for small times. At large times hp2�t�i converges to the
expectation of p2 with the stationary (non-Maxwellian)
momentum distribution

P0�p� �N exp���jpj3=�3p0D1�� (9)

(N is a normalization constant). At large times the dy-
namics of the spatial displacement is diffusive hx2�t�i �
2Dxt with diffusion constant

D x �
�p0D1�

2=3

m2�5=3

�3�5=6

2��2=3�2
F32

�
1

3
;
1

3
;
2

3
;
5

3
;
5

3
; 1
�

(10)

(here F32 is a hypergeometric function). At small times, by
contrast, we obtain anomalous diffusion

hx2�t�i � Cx��p0D1�
2=3m�2�t8=3; (11)

where the constant Cx is given by (29) below.
Ladder operators and eigenfunctions.—The eigenfunc-

tions of the Fokker-Planck Eq. (5) are alternately even and
odd functions, defined on the interval ��1;1�. The op-
erator Ĥ, describing the limiting case of this Fokker-Planck
operator, is singular at z � 0. We identify two eigenfunc-
tions of Ĥ by inspection,  �0 �z� � C�0 exp��jzj3=6�,
which has eigenvalue ��0 � 0 and  �0 �z� � C�0 zjzj 	
exp��jzj3=6�, with ��0 � �2. These eigenfunctions are
of even and odd parity, respectively. Our approach to
determining the full spectrum will be to define a raising
operator Â� which maps any eigenfunction  
n �z� to its
successor with the same parity,  
n�1�z�, having two addi-
tional nodes.

We now list definitions of the operators we use: raising
and lowering operators, Ây and Â, as well as an alternative
representation of the Hamiltonian:

â
 � �@z 
 zjzj=2�; Â � â�jzj�1â�;

Ây � â�jzj�1â;� Ĥ � â�jzj�1â�;

Ĝ � â�jzj�1â�:

(12)
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Note that Ây is the Hermitian conjugate of Â. We have

�Ĥ; Â� � 3Â and �Ĥ; Ây� � �3Ây (13)

(the square brackets are commutators). These expressions
show that the action of Â and Ây on any eigenfunction is to
produce another eigenfunction with eigenvalue increased
or decreased by three, or else to produce a function which
is identically zero. The operator Ây adds two nodes, and
repeated action of Ây on  �0 �z� and  �0 �z� therefore ex-
hausts the set of eigenfunctions. Together with ��0 � 0 and
��0 � �2 this establishes that the spectrum of Ĥ is indeed
(7). Some other useful properties of the operators of
Eq. (12) are

�Ây; Â� � 3�Ĥ � Ĝ�; Ĥ � Ĝ � Î;

ÂyÂ � Ĥ2 � 2Ĥ:
(14)

We represent the eigenfunctions of Ĥ by kets j �n i and
j �n i. The actions of Â and Ây are

Â yj 
n i � C
n�1j 


n�1i; Âj 
n i � C
n j 



n�1i; (15)

where [using (14)] we have C
n �
�����������������������
3n�3n� 2�

p
.

A peculiar feature of Â and Ây is that they are of second
order in @=@z, whereas other examples of raising and
lowering operators are of first order in the derivative. The
difference is associated with the fact that the spectrum is a
staggered ladder: only states of the same parity have equal
spacing, so that the raising and lowering operators must
preserve the odd-even parity. This suggests replacing a
first-order operator which increases the quantum number
by one with a second-order operator which increases the
quantum number by two, preserving parity.

There is an alternative approach to generating the eigen-
functions of Ĥ. This equation falls into one of the classes
considered in [10], and we have written down first-order
operators which map one eigenfunction into another.
However, these operators are themselves functions of the
quantum number n, making the algebra cumbersome. We
have not succeeded in reproducing our results with the
‘‘Schrödinger factorization’’ method.

Propagator and correlation functions.—The propaga-
tor of the Fokker-Planck Eq. (5) can be expressed in terms
of the eigenvalues ��n and eigenfunctions ��

n �z� �
P�1=2

0  �n �z� of F̂:

K�y; z; t0� �
X1
n�0

X
��
1

a�n �y��
�
n �z� exp���n t

0�: (16)

Here y is the initial value and z is the final value of the
coordinate. The expansion coefficients a�n �y� are deter-
mined by the initial condition K�y; z; 0� � ��z� y�,
namely, a�n �y� � P�1=2

0  �n �y�. In terms of the eigenfunc-
tions of Ĥ we have
03060
K�y; z; t0� �
X
n�

P�1=2
0 �y� �n �y�P

1=2
0 �z� 

�
n �z� exp���n t

0�:

(17)

The propagator determines correlation functions. Assum-
ing z0 � 0 we obtain for the expectation value of a function
O�z� at time t

hO�z�t0��i �
X1
n�0

 �n �0�
 �0 �0�

h �0 jO�ẑ�j 
�
n i exp���n t0�: (18)

Similarly, for the correlation function of O�z�t02�� and
O�z�t01�� (with t02 > t01 > 0)

hO�z�t02��O�z�t
0
1��i �

X
nm�

 �m �0�
 �0 �0�

h �0 jO�ẑ�j 
�
n i

	 h �n jO�ẑ�j 
�
m i

	 exp���n �t02 � t
0
1� � �

�
mt01�: (19)

Momentum diffusion.—To determine the time-dependence
of hp2�t�i we need to evaluate the matrix elements Y0n �
h �0 jẑ

2j �n i. A recursion for these elements is obtained as
follows. Let Y0n�1 � h 

�
0 jẑ

2Âyj �n i=C
�
n�1. Write ẑÂy �

ẑ Ĝ�ẑ�Ây � Ĝ� � ẑ�Ĥ � Î� � ẑ�Ây � Ĝ�. It follows

h �0 jẑ
2Âyj �n i � ��

�
n � 1�Y0n � h 

�
0 jẑ

2�Ây � Ĝ�j �n i:

(20)

Using �Ây � Ĝ� � �ẑâ� and �ẑ3; â�� � �3ẑ2 we obtain
Y0n�1 � ��n � 2Y0n=C�n�1, and together with Y00 �

37=6��2=3�=�2�� this gives

Y0n � ��1�n�1 317=12��2=3�3=2���
2
p
�3=2�3n� 2�

������������������������
��n� 1=3�

p
�������������������
��n� 1�

p : (21)

We also find

 �n �0�= 
�
0 �0� � ��1�n

�������������������������������������������������
3
p

��2=3�

2�
��n� 1=3�

��n� 1�

s
; (22)

and after performing the sum in (18) we return to dimen-
sional variables. The final result is (8).

Spatial diffusion.—The time-dependence of hx2�t�i is
determined in a similar fashion, from

hx2�t�i �
1

�2

�
p0D1

�

�
2=3 1

m2

Z t0

0
dt01

Z t0

0
dt02hzt01zt02i: (23)

The matrix elements Zmn � h �m jẑj �n i are found by a
recursion method, analogous to that yielding (21)

Zmn � ��1�m�n
35=6

6�
�m� n� 1���2=3�

	

�������������������������������������������
��n� 1���m� 1=3�

p
�������������������������������������������
��m� 1���n� 5=3�

p ��n�m� 1=3�

��n�m� 2�
(24)

for l � m� 1 and zero otherwise. Using (19) we obtain
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FIG. 2 (color online). Shows hp2�t�i and hx2�t�i. Computer
simulation of the equations of motion _p � ��p� f�x; t� and
m _x � p (symbols); theory, Eqs. (9) and (25), red lines. Also
shown are the limiting behaviors for hx2�t�i, (10) and (11), at
long and short times (dashed lines). In the simulations, C�X; t� �
�2 exp��X2=�2�2� � t2=�2�2��. The parameters were m � 1,
� � 10�3, � � 0:1, � � 0:1, and � � 20.
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hx2�t�i �
�p0D1�

2=3

m2�5=3

X1
k�0

X1
l�k�1

AklTkl�t
0� (25)

with Akl � � �k �0�= 
�
0 �0��Z0lZkl and with

Tkl�t0� �
Z t0

0
dt01

Z t0

t01

dt02e
��l �t

0
2�t

0
1���

�
k t
0
1

�
Z t0

0
dt01

Z t01

0
dt02e

��l �t
0
1�t

0
2���

�
k t
0
2 : (26)

We remark upon an exact sum rule for the Akl, and also on
their asymptotic form for k
 1, l
 1:

Xl�1

k�0

Akl � 0; Akl �
��2=3�2

31=34�2

k� l

k2=3l4=3�l� k�5=3
: (27)

We now show how to derive the limiting behaviors (10) and
(11), shown as dashed lines in Fig. 2. At large time x
evolves diffusively: hx2i � 2Dxt, with the diffusion con-
stant obtained from

D x �
1

2m2�

�
p0D1

�

�
2=3

lim
T!1

Z 1
�1

dt0hzTzt0�Ti

�
�1

m2�

�
p0D1

�

�
2=3 X1

n�0

Z2
0n

��n
; (28)

which evaluates to (10). At small values of t0 the double
sum (25) is dominated by the large-k; l terms. We evaluate
the small-t0 behavior by approximating the sums by inte-
grals, using the asymptotic form for the coefficients Akl. A
nonintegrable divergence of A�k; l� (as k! l) can be can-
celed by using the sum rule in Eq. (27). We obtain the
limiting behavior (11) with

C x � �C
Z 1

0

dx

x8=3

Z 1

0
dy
�
a�x� � a�xy�

1� y
� xa0�x�

�
b�y�;

(29)

where a�x� � �1� exp��x��=x, b�y� � �1� y�	
03060
�1� y��5=3y�2=3, and C � 31=3��2=3�2=�2�2�. The inte-
gral is convergent and can be evaluated numerically to give
Cx � 0:57 . . . . This is in good agreement with a numerical
evaluation of the sum (25), as shown in Fig. 2.

Gradient-force case.—When the force is the gradient of
a potential function, we have (generically) D�p� �
D3p

3
0=jpj

3 �O�p�4� [4]. In dimensionless variables the
Fokker-Planck equation is @t0P � @z�zP� jzj�3@zP� �
F̂P instead of (5). This Fokker-Planck equation has the
non-Maxwellian equilibrium distribution P0�z� �
exp��jzj5=5�. The raising and lowering operators are of
the form Ây � â�jzj�3â� and Â � â�jzj�3â� with â
 �
�@z 
 zjzj

3=2�. The analogue of (13) is �Ĥ; Â� � 5Â,
�Ĥ; Ây� � �5Ây, and the eigenvalues are 0;�4;�5;
�9;�10;�14;�15; . . . . In this case, too, a closed expres-
sion, for example, for hp2�t�i is obtained, analogous to (1)
but exhibiting anomalous diffusion

hp2�t�i � p2
0

�
5D3

�p2
0

�
2=5 sin��=5���3=5���4=5�

�

	 �1� e�5�t�2=5: (30)

The short-time anomalous diffusion is consistent with the
scaling obtained in [4,5] for undamped stochastic
acceleration.

Nondifferentiable correlation functions.—The case
where D�p� / jpj�	 (for some general exponent 	 > 0)
can be relevant when the correlation function C�x; t� is
nonanalytic at t � 0. Here too we find raising and lowering
operators and staggered ladder spectra and obtain results
analogous to those quoted above. The anomalous-diffusion
exponents at short times are hp2�t�i � t2=�2�	� and hx2�t�i �
t�6�2	�=�2�	�.
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