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Improved Transfer of Quantum Information Using a Local Memory
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We demonstrate that the quantum communication between two parties can be significantly improved if
the receiver is allowed to store the received signals in a quantum memory before decoding them. In the
limit of an infinite memory, the transfer is perfect. We prove that this scheme allows the transfer of
arbitrary multipartite states along Heisenberg chains of spin-1=2 particles with random coupling strengths.
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FIG. 1. Alice and Bob control the spins NA and NB intercon-
nected by the spins NC. At time j� Bob performs a swap Sj
between his spins and the memory Mj.
Suppose you want to send an unknown quantum state to
your friend. Which technique should you use? Obviously
you cannot just perform a measurement and call him/her,
because such a measurement would in general reveal only
very limited information about the state. Another possibil-
ity would be to send the full physical system of the state,
but that is difficult if your state is not implemented in a
mobile medium (photons, electrons, etc.) and cannot be
converted to such media easily. This is the typical situation
one has to face in solid state systems, where quantum
information is usually contained in the states of fixed
objects such as quantum dots or Josephson junctions. In
this case, a quantum wire that transports states just like
optical fibers transport photons may be used. If local
control (gates, measurements) is available all along such
a wire, then this state transfer is possible via a series of
swap gates or by entanglement swapping followed by tele-
portation. However, this scenario may be very difficult to
realize in practice. Motivated by such experimental restric-
tions, permanently coupled systems without local access
were suggested [1,2], but because of dispersion the fidelity
of the transfer is in general low. One way of improving this
is by engineering specific Hamiltonians [3] or by coupling
the system only weakly to the communicating parties [4].
Another approach proposed is to make use of gates at the
sender (Alice) and the receiver (Bob) locations and to
encode the states to be sent to yield perfect state transfer
[5–7]. This way the demands on the engineering of the
Hamiltonian could be relaxed. In some sense the effort of
control and engineering has been shifted to the encoding
and decoding by Alice and Bob. Here we would like to go
one step further by proposing to make use of even more
resources of Bob, i.e., to use his quantum memory. We will
show that perfect state transfer can be achieved using a
single permanently coupled quantum chain if Bob pos-
sesses an infinite quantum memory. This is achieved by
swapping the part of the chain that Bob controls to his
memory at equal time intervals. Eventually, the whole
quantum information is contained in his memory and can
be decoded by unitary operations. Since this happens in-
dependently of the initial state of the chain, it is an example
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of homogenization [8] and asymptotic completeness [9].
The crucial difference is that in our system the memory is
only interacting with Bob, and the completeness is medi-
ated to the rest of the system through the permanent
couplings. We note that with the ideas in [9] it is also
possible for Bob to send messages to Alice, using the
time-reversed protocol. The main advantage of using a
memory is that—opposed to the schemes in [1,3–7]—
Alice can send arbitrary multiqubit states, including com-
plex entangled states, with a single usage of the channel.
She needs no encoding, all the work is done by Bob. If
Bob’s memory is only finite, he can still use it to improve
the fidelity of the transfer substantially (the fidelity grows
exponentially with the size of the memory). The protocol
proposed here can be used to improve the performances of
the schemes [1,3–7], and it works for a large class of
Hamiltonians, including Heisenberg and XY models with
arbitrary (also randomly distributed) coupling strengths.
Furthermore, the timing of our protocol scales in a reason-
able manner with the length of the chain.

Protocol.—Consider a chain of spin-1=2 particles de-
scribed by a HamiltonianH which commutes with the total
spin component Sz. The chain is assumed to be divided in
three portions A (Alice), B (Bob), and C (the remainder of
the chain, connecting Alice and Bob) containing, respec-
tively, the first NA spins of the chain, the last NB spins, and
the intermediate NC spins, and the total length of the chain
is N � NA � NC � NB (see Fig. 1). Bob has access also to
a collection of quantum memories M1; . . . ;Mj . . . , isomor-
phic with B, i.e., each having dimension equal to the
dimension 2NB of B. Without losing generality it will be
useful to represent each of these memories as a noninter-
acting collection of NB spins. The protocol goes then as
follows. Suppose that at time t � 0 Alice prepares her
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spins in the (possibly unknown) input state j iA. The total
state of the chain plus memories is then j 000iACBM �
j iA � j0iC � j0iB � j0iM, where we assumed C, B, and
the memories to be originally in the all-spin-down state
(here j0iM is a compact notation for the product state
j0iM1

� � � � � j0iMj
� � � ). To recover Alice message, Bob

performs unitary swap operations between the B spins and
the memoriesMj. In particular, at time � > 0 Bob performs
a swap between the memory M1 and B; at time 2� he
performs a swap betweenM2 and B; at time 3� he performs
a swap between M3 and B; and so on. Under these hypoth-
eses the state of the whole system after j steps is described
by the unitary transformation

j 000iACBM ! Wjj 000iACBM; (1)

whereWj is the product of free evolutions of the chainU �
exp�� i

@
H�� and swap Sj between the memory Mj and B,

i.e.,

Wj � SjUSj�1U � � � S2US1U: (2)

For simplicity we assumed equal time intervals �, but the
generalization to arbitrary time intervals f�igi is straight-
forward. The mapping Wj preserves the total number of
excitations in A� C� B�M but tends to decrease the
number of excitations in A� C� B. In fact, on one hand,
the operators U shuffle the spin-up components of the state
around the chain A� C� B while, on the other hand, the
Sj exchange the state of B with the no-excitation state of
the memory Mj. In the limit of large j one expects that
eventually this mechanism will provide the transfer of j iA
into Bob memories. To see how this might happen let us
consider first the case NA;NB � 1, where j iA is a generic
superposition of j0iA and the spin-up state j1iA of A. In this
context one easily verifies that if protocol (1) stops just
after the first swap, the state j iA can be recovered from
M1 with fidelity �1 � jACBh001jUj100iACBj

2 identical to
the transfer fidelity of Ref. [1]. If instead protocol (1) runs
up to second swap, j iA can be recovered from the state of
the memories M1 �M2 with fidelity �2 � �1 �

j
PN�1
‘�1 ACBh001jUj‘iACBh‘jUj100iACBj

2, which typically is
already higher than the fidelity �1 (in this expression
j‘iACB stands for the state of the chain with a single spin-
up component in the ‘th location). Analogously one finds
that at the jth step j iA can be recovered fromM1 � � � � �

Mj with a fidelity �j which is greater than or equal to the
fidelity �j�1 of the (j� 1)th step. We claim that this a
general trend which does not depend on the size of NA and
NB. In particular, under a quite general hypothesis on H,
we will show that in the limit of j! 1 the input state j iA
will be transferred to the memories M leaving the chain
A� B� C in the no-excitation state j000iACB, i.e.,

lim
j!1

Wjj 000iACBM � j000iACB � j�	 
iM; (3)

with j�	 
iM being a state of M which explicitly depends
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on the input state j iA and on �. If the input state j iA does
not contain excitations, Eq. (3) trivially follows from the
fact that for all j the operator Wj maps j0000iACBM into
itself. For j iA � j0iA instead Eq. (3) requires all the
excitations originally present in A� C� B to move in
the memory M as j increases. In our protocol, the state
of B is set to j0iB at each step, so for proving Eq. (3) it is
sufficient to show that all the excitations leave the sub-
system A� C. In other words, given the reduced density
matrix

�AC	j
 � TrBM�Wj	j 000iACBMh 000j
Wyj � (4)

of A� C at the jth step of the protocol, Eq. (3) is equiva-
lent to requiring the following identity:

lim
j!1AC

h00j�AC	j
j00iAC � 1: (5)

Before proving this result we notice that it implies that Bob
can reliably recover Alice’s messages by applying a unitary
transformation on the memory only (or, alternatively, Bob
could feed the memory state into another chain using the
time-reversed protocol). In fact, since the Wj are unitary
operators, they describe in the limit j! 1 a unitary map
from A into a subspace MA of the memory of dimension
2NA . The explicit form of this map depends upon the
unitaries U of Eq. (2) and can be determined by the
communicating parties either by knowing the chain
Hamiltonian H or by performing a set of measurements
prior to the transmission.

Convergence.—We prove Eq. (5) by showing that the
probability of having one or more excitations in A� C at
the jth step of the protocol converges to zero as j!1. At
the beginning of the protocol there are at most NA excita-
tions in the system. For 1 � n � NA we are interested in
the probability Pn	j
 of having n or more excitations in
A� C at the jth step of the protocol. This is

Pn	j
 �
XNA

n0�n

TrAC��AC	n0
�AC	j
�; (6)

where �AC	j
 is given by Eq. (4) and �AC	n0
 are the
projectors on the ( NA�NCn0 )-dimensional Hilbert subspace
of A� C formed by the vectors with n0 spins up. An
inequality for the Pn	j
 is obtained by noticing that the
total number of excitations in A� C never increases with
j: this allows one to upper bound Pn	j� j1
 with the
probability Pn�1	j1
 of having more than n� 1 spins up
in A� C at the j1th step plus the maximum joint proba-
bilityQn	j� j1; j1
 of having exactly n spins up at the step
j1 and maintaining them in the next j steps of the protocol,
i.e.,

Pn	j1 � j
 � Pn�1	j1
 �Qn	j1 � j; j1
: (7)

The formal derivation of this rather intuitive expression is
straightforward but tedious: we report a sketch of it in [10].
An expression for Qn	j1 � j; j1
 follows by noticing that
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any state of A� C� B will maintain a constant number of
excitations in the chain during the whole protocol if and
only if it has no excitations in B when Bob applies the
swaps Sj. For instance, consider the state �AC	j1
 of A� C
immediately after the j1th step. According to the protocol
the section B is in j0iB and the free evolution of the chain in
the forthcoming time interval is described by U	�AC	j1
 �
j0iBh0j
Uy. The probability of not losing any excitations at
step j1 � 1 is then proportional to the probability that this
state does not contain excitations in B, i.e.,

p1 � Bh0jTrAC�U��AC	j1
 � j0iBh0j�U
y�j0iB

� TrACB�T��AC	j1
 � j0iBh0j�T
y�; (8)

with T � j0iBh0jU. Moreover, if no excitation leaves the
chain at the j1 � 1th step, the state of A� C� B is pro-
jected into

~�AC	j1 � 1
 � j0iBh0j �
1

p1
T��AC	j1
 � j0iBh0j�T

y:

By iteration the probability that ~�AC	j1 � 1
 will not loose
excitations in the next step of the protocol is ~p2 �
TrACB�T�~�AC	j1 � 1
 � j0iBh0j�T

y�, while the joint proba-
bility of not losing excitations in the 	j1 � 1
th and in the
	j1 � 2
th steps is given by p2 � p1 ~p2. Analogously the
joint probability of not losing excitations in all steps from
j1 � 1 up to j1 � j is equal to

pj � TrACB�Tj��AC	j1
 � j0iBh0j�	Ty
j�: (9)

The quantity Qn	j1 � j; j1
 can now be computed by as-
suming �AC	j1
 to have exactly n excitations and max-
imizing pj with respect to such a choice, i.e.,

Qn	j1 � j; j1
 � max
j�niAC

TrACB�T
j	j�niACh�nj

� j0iBh0j
	T
y
j�

� max
j�niAC

kTj	j�n0iACB
k
2; (10)

where j�niAC is a generic state of A� Cwith n excitations
and j�n0iACB � j�niAC � j0iB. Notice that by exploiting
the convexity of mixed states, the maximization in Eq. (10)
has been performed only on pure states. For n � 0 it is
trivial to see that Q0	j1 � j; j1
 � 1 for all j and j1. We
will show now that, for n � 1 and j1 � 0, one has instead

lim
j!1

Qn	j1 � j; j1
 � 0: (11)

Because the operator T conserves the number of excita-
tions, we get

kTjj�n0iACBk
2 � kTjnj�n0iACBk

2; (12)

where Tn � �ACB	n
T�ACB	n
 is the restriction of T to
the subspace with n excitations. Equation (12) converges to
zero for all �n iff the spectral radius �	Tn
 of T is smaller
than 1 [11]. Since Tn is the product of a projector and a
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unitary operator, it is easy to see that this is the case [7] iff
there exists no common eigenstate of j0iBh0j and Un �
�ACB	n
U�ACB	n
. Because Un �

P
exp	�iEn�
jEni

hEnj, where jEni are the eigenstates of the Hamiltonian H
with exactly n excitations, it is always possible to find a
choice for the interval � such that Eq. (11) holds, as long as
given n � 1 there are no eigenstates jEni of factorizing
form with j0iB, i.e.,

69 j�niAC: Hj�niAC � j0iB � Ej�niAC � j0iB: (13)

Under this condition Eq. (7) implies that for any �1 > 0
there exists a sufficiently big J1 such that for all j > J1 one
has Pn	j1 � j
 � Pn�1	j1
 � �1. Reiterating this with re-
spect to n one can show that given � > 0 there is J such
that for all j > J

Pn	j1 � j
 � PNA	j1
 � �; (14)

where NA is the maximum number of spin up Alice can
introduce in A. From our definitions the quantity PNA	j1
 is
the probability of having NA spins up in A� C� B at the
j1th step. This quantity cannot be greater thanQNA	j1; 0
 of
Eq. (10). But, according to Eq. (11), this nullifies in the
limit j1 ! 1. Therefore for n � 1 one has limj!1Pn	j
 �
0, which gives the thesis.

Nearest-neighbor interactions.—The requirement (13)
is quite general and does not require any particular con-
straint on the topology of the system (e.g., it does not need
to be a chain). However, in the following we will focus on
the special case of linear open chains showing that (13) is
always satisfied if they (a) conserve the number of excita-
tions and (b) are connected by nearest-neighbor exchange
terms. This includes the randomly coupled chains consid-
ered in [6]. Consider in fact one of such chains and assume
by contradiction it has an eigenvector jEni which falsifies
Eq. (13) for some n � 1. Such an eigenstate can be written
as

jEni � aj�niAC � j0iB � bj ��niAC � j0iB; (15)

where a and b are complex coefficients and where the spin
just before the section B (with position NA � NC) is in the
state j0i for j�niAC and in the state j1i for j ��niAC. Since the
interaction between this spin and the first spin of section B
includes an exchange term, then the action of H on the
second term of (15) yields exactly one state which contains
an excitation in the sector B which cannot be compensated
by the action of H on the first term of (15). But by
assumption jEni is an eigenstate of H, so we conclude
that b � 0. This argument can be repeated for the second
last spin of section C, the third last spin, and so on, to
finally yield jEni � j0iACB, as long as all the nearest-
neighbor interactions contain exchange parts. This leads
to a contradiction for n � 1.

Time scale.—As we have shown above, the communi-
cating parties can achieve perfect state transfer in the limit
of infinite time and an infinitely large memory space.
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However, in practice, Bob’s resources and time will be
limited. If the protocol stops after j operations, how does
the fidelity depend on the number of qubits NA being
transferred, and on the total length of the chain? This
question is clearly strongly depending on the specific
Hamiltonian of the chain. For example, in the case of
engineered couplings [3], a single swap operation would
already suffice. We would like to keep the argument in this
section as general as possible to find a rough estimate of the
fidelity based on statistical arguments. If the system has
some special symmetries, the fidelity may be much higher,
as in the case of engineered couplings, or may also be
much lower, but in practice these cases are extremely
unlikely.

Since the transfer of spin-down components occurs
naturally in our model, one may argue that the worst case
scenario is when Alice wants to send the state j11 � � � 1iA.
After an initial time Te that it takes excitations to travel
across the chain, we expect that the NA excitations origi-
nally at Alice’s site are distributed with an average number
of NA=N excitations per site. On average, Bob’s region of
the chain should therefore contain NBNA=N excitations. Of
course the expectation value of the number of excitations is
a strongly fluctuating function of time. However, in a
slightly modified protocol with optimized swapping times
f�igi, it should be easy to find a swapping time �1 2 �0; Te�
such that after performing the swap operation, there are on
average N1 � 	1� NB=N
NA excitations left which re-
main in the part A� C of the chain. After another time
of the order of Te, they will be spread along the whole
chain again, with NBN1=N being the average number in
Bob’s section. More generally, after a time t � jTe the
average number of excitations in the system after j swap
should be of the order Nj � 	1� NB=N
jNA (we have
confirmed this estimate numerically for short Heisenberg
spin chains). The fidelity F of the state transfer is lower
bounded by the probability of having no excitations in the
chain A� C� B. For Nj � 1 we can lower bound this
quantity by 1� Nj. Thus for large j one has F � 1� 	1�
NB=N


jNA. Replacing j ’ t=Te and taking the limit N �
1, the above inequality shows that the fidelity F can be
reached after a time t � NTe	lnNA � j ln	1� F
j
=NB. In
translationally invariant systems the group velocity is typi-
cally independent of the lengthN of the chain. Therefore in
these systems Te is scaling linearly with N [1] and the
above equation shows that t scales quadratically with N. A
special case of this expression with NA � NB � 1 and 1�
F corresponding to a probability of failure was already
considered in the conclusive dual rail schemes [6]. From
the above analysis it follows that the size of Bob’s region
03050
can make the transfer quicker, and that the time scale de-
pends only logarithmically on the amount of qubits that
Alice wants to send. It is therefore more efficient to send
many qubits at once rather than repeating the protocol.

Conclusions.—We have shown that the usage of the
quantum memory of the receiver can strongly increase
the fidelity of quantum state transfer with permanently
coupled quantum chains. In the limit of an infinite memory,
the transfer is perfect. Furthermore, this scheme allows one
to send arbitrary multipartite states rather than just single
qubit states.
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