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Shape-Induced Frustration of Hexagonal Order in Polyhedral Colloids
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The effect of a nonspherical particle shape and shape polydispersity on the structure of densely packed
hard colloidal particles was studied in real space by confocal microscopy. We show that the first layer at
the wall of concentrated size-monodisperse but shape-polydisperse polyhedral colloids exhibits significant
deviations from a hexagonal lattice. These deviations are identified as bond-orientational fluctuations
which lead to percolating “mismatch lines.” While the shape-induced geometrical frustration of the
hexagonal symmetry suppresses translational order, bond-orientational order is clearly retained, indicating

a hexaticlike structure of the polyhedral colloids.
DOI: 10.1103/PhysRevLett.96.028304

Polydispersity is an intrinsic property of colloidal sys-
tems. For hard spheres it is well known that size polydis-
persity has a tremendous effect on the structure and
dynamics [1-6]. However, the effect of the particle shape
is a more general issue, as molecular systems are ‘“‘mono-
disperse” in size but usually not spherical. The impact of
shape is, for example, demonstrated in simulations that
show the existence of a rotator-phase in hard hexamers,
pentamers, and pentagons [7-10], being absent in hard
spheres. The influence of shape polydispersity on crystal-
lization has hardly been addressed, despite the fact that
relevant systems like nanoparticles [11] and granular mat-
ter [12] often exhibit a distribution of particle shapes. Here,
we use a colloidal model system to study the influence of
only the particle shape on the structure of densely packed
particles. In particular, the particles represent hard spheres
that are monodisperse in size, but have a small random
perturbation in shape.

The model colloids are crosslinked and fluorescently
labeled polymethylmethacrylate (PMMA) particles. Their
preparation is described in Ref. [13]. As shown in the inset
in Fig. 1(a), these particles clearly have a nonspherical,
polyhedral shape, which was also observed using electron
microscopy. Note, that “polyhedral” refers to the two-
dimensional (2D) cross section through the center of the
three-dimensional particle. The particle shape can be char-
acterized by a shape factor SF = 47A,/ P2, with A p» the
projected particle area and P, the projected perimeter. The
average SF for the polyhedrals is 0.76 = 0.09 compared
to 1 for a perfect sphere. The random character of the
nonsphericity is reflected by the polydispersity in shape
of 11.8%. Comparison to regular polygons reveals that the
polyhedrals are on average best described by pentagons.
Remarkably, their size polydispersity is comparable to that
of rather monodisperse colloidal spheres. Therefore, these
polyhedrals provide an excellent model system to inves-
tigate the effect of shape and shape polydispersity. In our
experiment, we compare the structure of the first layer at
the wall of densely packed polyhedrals to one formed by
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spherical and size-monodisperse reference PMMA par-
ticles [inset Fig. 1(b)] [14]. The diameters d and shape
factors are respectively d =2.23 +0.09 um, SF =
0.76 = 0.09 (polyhedrals) and d = 2.33 = 0.07 um, SF =
0.96 = 0.02 (spheres). Both systems were dispersed in a
mixture of cis-decalin, tetralin, and carbontetrachloride,
which matches the refractive index and almost the mass
density of the particles [15]. In this solvent, the PMMA
particles interact via a hard-sphere-like potential [15]. For
both systems a sample with a volume fraction ¢ = 0.40
was prepared by diluting a random close packed sample
(¢prcp = 0.65 for a polydispersity of ~3%) [16]. During
slow sedimention, the particles start to order at the bottom
wall of the sample container. No sticking to the glass wall
was observed. Since the influence of the particle shape is
most pronounced at highest compression, we analyzed the
structures after sedimentation had fully completed. The
particles were imaged using a Nikon TE 2000U inverted
microscope equipped with a Nikon C1 confocal scanning
laser head. Each frame contained more than 2000 particles.
The variations between the frames were negligible and
averaging only reduced the noise in the data. The enhanced
ordering and layering of the structures at the wall—which
does not persist in bulk—allowed a quantitative 2D analy-
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FIG. 1 (color online). Confocal microscopy images (20 X
20 um?) showing defect-free regions of packings of
polyhedrals (a) and of spheres (b). The insets show the poly-
hedral and spherical shape of a single particle.
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sis of the structures present in the first layer of particles at
the flat glass bottom wall of the container [6,17]. The
centers of the particles were located using image-analysis
software similar to that described in [18]. We verified that
the polyhedral particle shape did not significantly affect the
accuracy of the particle tracking. We focused on the struc-
ture of single-crystalline domains in the first layer at the
wall, thereby leaving the influence of grain boundaries out
of consideration. The surface fractions (=N7A, /L?, with
Ny the total number of particles in the image and L? the
area of the image) were virtually equal: 0.846 and 0.852,
respectively, for the polyhedrals and the spheres.

Detailed real-space images of the structures of the
spheres and the polyhedrals after complete sedimentation
are presented in Fig. 1. First, we note that despite their
shape the polyhedral colloids clearly exhibit hexagonal
ordering. To quantify the structural differences observed
in the first layer at the wall, we computed the radial
distribution function g(r) and the bond-orientational cor-
relation function gg(r) [17,19], which is defined as

86(r) = (5 (0)¢hs(r) (1)

with
1
We(r;) = N ; eXP[6i9(”zj)]- (2)

Here, ¢ is the local bond-orientational order parameter,
where the summation j runs over all, in total N, nearest
neighbors of particle i. 6(r;;) is the angle between the
bond-vector connecting particles i and j and an arbitrary
fixed reference axis. The () in Eq. (1) denote averaging
over all pairs of particles and the index i in Eq. (2) runs
over all particles.

As shown in Fig. 2(a) the peaks in the g(r) of the
polyhedrals are markedly broadened and the structure in
the g(r) decays much faster in comparison to the g(r) of the
spheres. Moreover, just the second peak is weakly splitted,
indicating local translational order only. The bond-
orientational correlation functions, which are shown in
Fig. 2(b), exhibit clear differences as well. The decays of
g¢(r) indicate that the bond-orientational correlation in the
polyhedral system is lost faster than in the crystal of the
spheres. Also the local hexagonal order as illustrated by
(lifg]) (Table 1), is smaller for the polyhedrals.

It is straightforward to see that a sphere with a randomly
perturbed shape locally disturbs hexagonal packing.
However, it is not directly clear how this noncommensurate
shape affects the bond-orientational correlation at larger
distances. To elucidate this, we studied the structure within
one lattice orientation. We selected sets of particles along a
line corresponding to one of the three lattice orientations,
which we term a “lattice line.” To decide if a particle
belongs to a lattice line, we set a threshold of =20 degrees
for the maximum orientation difference between succes-
sive particles in a lattice line. Hence, we avoid kinks in the
lattice lines due to defects (>20°) without neglecting the
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FIG. 2. (a) Pair correlation functions for the polyhedrals (gray)

and the spheres (black). The latter has been vertically shifted for
clarity. The insets show an enlargement of the first peaks to
emphasize the differences between the polyhedrals and the
spheres. (b) Bond-orientational correlation function for the poly-
hedrals (gray) and the spheres (black). The dotted curves are 1D
bond-orientational correlation functions (as defined in the text),
which are vertically shifted for an easy comparison to the decay
of the corresponding 2D bond-orientational correlation function.

fluctuations (<20°). All the order parameters determined
using these lattice lines were averaged over all three lattice
orientations.

First, we calculated the mean orientation 6; of every
lattice line i being the average over the orientations of all
particles constituting lattice line i. The orientation of a
particle @ is given by the average orientation of the bond
vectors to its nearest neighbors in a lattice line.
Subsequently, for all particles, the difference A6 = 6 —
0; was determined. The angle distribution P(A6) denotes
the histogram of the whole set of A#’s. The angle distri-
butions for both systems are distinctively different as
shown in Fig. 3. The polyhedral distribution is much
broader than the relatively sharp distribution of the spheres,
pointing to significant bond-orientational fluctuations in
the polyhedral lattice lines compared to those of the
spheres. In both cases, the lattice lines are on average
straight, which is illustrated by the Gaussian shapes of
the angle distributions around zero. To probe how the
bond-orientational fluctuations affect the bond-order cor-
relation in a lattice line, we calculated the one-dimensional
analog of Eq. (1): gg”(r) = (X Xz cos[6A0(r)]),
where A6(ry;) is the angle difference between the orienta-
tions of particles k and /. The gL (r) for the spheres and the
polyhedrals are shown as dotted lines in Fig. 2(b). It is
obvious that the decay of glP(r) is completely similar to
that of the envelope of g4(r). This directly confirms that the

TABLE I. Correlation lengths, power-law exponents, and local
hexagonal order parameter for the single-crystalline domains of
spheres and polyhedrals.

Polyhedrals Spheres
Local hexagonal order parameter {|i|) 0.85 0.95
Translational correlation length &7 (d) 3.1 12.0
Orientational correlation length &, (d) 91 423
Power-law exponent 7 0.12 0.02
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0121 | were mapped onto the particle positions, obtaining a set
0.10 1 of connected grid-coordinate pairs [20]. From these
0.08 1 ] combinations, the root mean squared deviation Ar =
%\ 0.06 1 ] (|7coord — Farial®) was calculated. Subsequently, minimiz-
A~ 00l ] ing Ar by small rotations and translations resulted in the
’ final mapping. We observe significant differences between
0.021 1 the polyhedrals and the spheres in Figs. 4(a) and 4(d),
0.00 T " T =
-30 =20 -10 0

: which show the displacement vectors between the grid
1020 30 points and the corresponding particle positions [20]. First
A0 (degrees) of all, the areas following the hexagonal grid are much
FIG. 3. The angle distribution from the lattice line analysis for Smal.ler for the p 0¥yhed.rals th‘,an for the SP heres, even
the polyhedrals (gray) and the spheres (black). The solid lines despite the bond-orientational s1pgle-crystalhne nature of
are Gaussian fits to the data. both systems. In other words, Fig. 4(a) suggests that the
polyhedral structure consists of small translationally or-
dered domains separated by ‘“mismatch lines” that perco-
late through the system. The completely randomized
orientations of the displacement vectors for the polyhedrals
[Fig. 4(b)] illustrate this ‘“‘translational polycrystallinity,”
which directly points towards the absence of translational
order. In contrast, the spheres only show some regions
where all the particles exhibit similar small deviations
from the hexagonal grid and no ‘“mismatch lines.” This

is reflected by the anisotropic distribution of the orienta-
tions of the

shape-induced bond-orientational fluctuations in the lattice
lines disturb the bond-order correlations in the polyhedral
structure.

To examine how these bond-orientational fluctuations
affect the hexagonal structure, we compared the sets of
particle positions for the polyhedrals and the spheres to
perfect hexagonal grids with a lattice constant equal to
the position of the first peak of g(r). The bond order
was aligned with the coordinate sets and the grid points
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FIG. 4 (color online).

5

Left column: Vector graphs (100 X 100 wm?) showing the displacement vectors for (a) the polyhedrals (Ar =
0.31d) and (d) the spheres (Ar = 0.21d). The length of the vectors has been increased by a factor of 2.5 for clarity. Central column:

The x and y components of the displacement vectors connecting the grid points of a perfect hexagonal lattice to the particle positions
for (b) the polyhedrals and (e) the spheres. Right column: Delaunay triangulations (100 X 100 um?) identifying the defective particles
by a color for (c) the polyhedrals and (f) the spheres. The color code is as follows: fourfold: blue, fivefold: green, sixfold: no color,
sevenfold: red, and eightfold: purple.
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The location of the deviations from a hexagonal grid
might be correlated to the presence of defects, which are
identified using a Delaunay triangulation [see Figs. 4(c)
and 4(f)]. Comparison with the vector graphs [Figs. 4(a)
and 4(d)] reveals that some defects induce a small mis-
match for the spheres. However, for the polyhedrals no
obvious correlation is found. Although defects will cause
mismatches, we argue that the bond-orientational fluctua-
tions in the polyhedral system are predominantly respon-
sible for the deviation from a hexagonal grid. Furthermore,
we observe a different nature of the defects in both sys-
tems. In the sphere crystal, mainly dislocation pairs (typi-
cally vacancies) and hardly any free dislocations are
observed, whereas in the polyhedral case much more free
dislocations are identified.

The combination of the nature of the defects, the ab-
sence of translational order, and the presence of bond-
orientational order [g¢(r)] point towards a hexatic nature
of the polyhedral packing. To confirm this, we determined
the translational correlation length &7 [envelope of g(r) o«

exp[;—T’]], the orientational correlation length &, [envelope
of gg(r) x exp[g—or]], and the power-law exponent 74 [en-

velope of ge(r) < r~"] for both systems (Table I).
Applying the Kosterlitz-Thouless-Halperin-Nelson-Young
formalism for two-dimensional melting [21-23], indeed
confirms the crystalline nature of the spheres and the
hexaticlike nature of the polyhedrals: the short range trans-
lational order is reflected by &7 being only a few particle
diameters, the (quasi) long-range orientational order by &
being more than 90 diameters and 74 equaling 0.12, which
is clearly within the hexatic region 0 < 1 = ‘—1‘ [22].

Clearly the random polyhedral particle shape geometri-
cally precludes the formation of a hexagonal crystal and
leads to a hexaticlike structure. Apart from the nonspher-
icity, the random character of the polyhedral shape—the
shape polydispersity—is a crucial property of the system.
While identical hexamers for instance exhibit translational
order at high densities [7,8], the translational order in our
system is disturbed by the shape polydispersity geometri-
cally frustrating hexagonal ordering. Similarly, it was re-
ported that the inherent geometrical frustration for
hexagonal ordering in two-dimensional arrays of bidis-
perse ball bearings, polydisperse hard spheres, and disks
can suppress translational order, leading to a hexatic struc-
ture [1,19,24] and even reentrant melting [6,25].

We have demonstrated that next to size polydispersity,
shape and shape polydispersity also significantly affect the
ordering of particles. In particular, dense packings of hard
spheres that have a small random perturbation in shape
exhibit clear deviations from a perfect hexagonal lattice in
terms of bond-orientational fluctuations. As a result, the

translational order is short ranged while the bond-
orientational order is retained, resulting in a hexaticlike
structure of the polyhedral colloids.
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