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Self-Organized Criticality Model for Brain Plasticity
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Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic
cultures. Here we present a model that is based on self-organized criticality and takes into account brain
plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists
of an electrical network with threshold firing and activity-dependent synapse strengths. The system
exhibits an avalanche activity in a power-law distribution. The analysis of the power spectra of the
electrical signal reproduces very robustly the power-law behavior with the exponent 0.8, experimentally
measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky
neurons, indicating that universality holds for a wide class of brain models.
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Cortical networks exhibit diverse patters of activity,
including oscillations, synchrony, and waves. During neu-
ronal activity, each neuron can receive inputs by thousands
of other neurons and, when it reaches a threshold, redis-
tributes this integrated activity back to the neuronal net-
work. Recently it has been shown that another mode of
activity is neuronal avalanches, with a dynamics similar to
self-organized criticality (SOC) [1–4], observed in organo-
typic cultures from coronal slices of rat cortex [5] where
neuronal avalanches are stable for many hours [6]. The
term SOC usually refers to a mechanism of slow energy
accumulation and fast energy redistribution driving the
system toward a critical state, where the distribution of
avalanche sizes is a power law obtained without fine tun-
ing: no tunable parameter is present in the model. The
simplicity of the mechanism at the basis of SOC has
suggested that many physical and biological phenomena
characterized by power laws in the size distribution repre-
sent natural realizations of the SOC idea. For instance,
SOC has been proposed to model earthquakes [7,8], the
evolution of biological systems [9], solar flare occurrence
[10], fluctuations in confined plasma [11], snow avalanches
[12], and rainfall [13].

In order to monitor neural activities, different time series
are usually analyzed through power spectra and, generally,
power-law decay is observed. A large number of time
series analyses have been performed on medical data that
are directly or indirectly related to brain activity. Promi-
nent examples are electroencephalogram (EEG) data
which are used by neurologists to discern sleep phases, di-
agnose epilepsy and other seizure disorders as well as brain
damage and disease [14,15]. However, the interpretation of
physiological mechanisms at the basis of EEG measure-
ments is still controversial. Another example of a physi-
ological function which can be monitored by time series
analysis is the human gait which is controlled by the brain
[16]. For all these time series the power spectrum, i.e., the
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square of the amplitude of the Fourier transformation
double logarithmically plotted against frequency, generally
features a power law at least over 1 or 2 orders of magni-
tude with exponents between 1 and 0.7. Moreover, experi-
mental results show that neurotransmitter secretion rate
exhibits fluctuations with time power-law behavior [17]
and power laws are observed in fluctuations of extended
excitable systems driven by stochastic fluctuations [18].

Here we present a model that is based on SOC ideas and
takes into account synaptic plasticity in a neural network.
With this model we analyze the time signal for electrical
activity and compare the power spectra with EEG data.
Plasticity is one of the most astonishing properties of the
brain, occurring mostly during development and learning
[19–21], and can be defined as the ability to modify the
structural and functional properties of synapses.
Modifications in the strength of synapses are thought to
underlie memory and learning. Among the postulated
mechanisms of synaptic plasticity, the activity-dependent
Hebbian plasticity constitutes the most fully developed and
influential model of how information is stored in neural
circuits [22–24]. A large variety of models for brain ac-
tivity has been proposed, based for instance on the con-
volution of oscillators [25] or stochastic waiting times [26].
They are essentially abstract representations on a meso-
scopic scale, but none of them is based on the behavior of a
neural network itself. In order to get real insights on the
relation between time series and the microscopic, i.e.,
cellular, interactions inside a neural network, it is neces-
sary to identify the basic ingredients of the brain activity
possibly responsible for characteristic scale-free behavior
observed through the spectrum power law.

In order to formulate a new model to study EEG signals,
we introduce within a SOC approach the three most im-
portant ingredients for neuronal activity, namely, threshold
firing, neuron refractory period, and activity-dependent
synaptic plasticity. We consider a simple square lattice of
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FIG. 1. Total current flowing in one square lattice configura-
tion (L � 1000, � � 0:03, �t � 0:0001, vmax � 6) as a function
of time in a sequence of several thousand stimuli. In the inset we
show the asymptotic value of the percentage of active bonds as a
function of � for L � 100. The value of the parameters is �t �
0:0001 and vmax � 6.
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size L� L on which each site represents the cell body of a
neuron, each bond a synapse. Therefore, on each site we
have a potential vi and on each bond a conductance gij.
Whenever at time t the value of the potential at a site i is
above a certain threshold vi � vmax, approximately equal
to �55 mV for the real brain, the neuron fires, i.e., gen-
erates an ‘‘action potential,’’ distributing charges to its
connected neighbors in proportion to the current flowing
through each bond

vj�t� 1� � vj�t� � vi�t�
iij�t�
P

k
iik�t�

(1)

where vj�t� is the potential at time t of site j, nearest
neighbor of site i, iij � gij�vi � vj� and the sum is ex-
tended to all nearest neighbors k of site i that are at a po-
tential vk < vi. After firing a neuron is set to a zero resting
potential. The conductances are initially all set equal to
unity whereas the neuron potentials are uniformly distrib-
uted random numbers between vmax � 2 and vmax � 1.
The potential is fixed to zero at the top and bottom whereas
periodic boundaries are imposed in the other direction.

The external stimulus is imposed at one input site in the
center of the lattice, and the electrical activity is monitored
as a function of time by measuring the total current flowing
in the system. The firing rate of real neurons is limited by
the refractory period, i.e., the brief period after the genera-
tion of an action potential during which a second action
potential is difficult or impossible to elicit. The practical
implication of refractory periods is that the action potential
does not propagate back toward the initiation point and
therefore is not allowed to reverberate between the cell
body and the synapse. In our model, once a neuron fires, it
remains quiescent for one time step and it is therefore
unable to accept a charge from firing neighbors. This
ingredient indeed turns out to be crucial for a controlled
functioning of our numerical model. In this way an ava-
lanche of charges can propagate far from the input through
the system.

As soon as a site is at or above threshold vmax at a given
time t, it fires according to Eq. (1); then the conductance of
all the bonds, connecting to active neurons and that have
carried a current, is increased in the following way:

gij�t� 1� � gij�t� � �gij�t� (2)

where �gij�t� � k�iij�t�, with � being a dimensionless
parameter and k a unit constant bearing the dimension of
an inverse potential. After applying Eq. (2) the time vari-
able of our simulation is increased by one unit.
Equation (2) describes the mechanism of increase of syn-
aptic strength, tuned by the parameter �. This parameter
then represents the ensemble of all possible physiological
factors influencing synaptic plasticity, many of which are
not yet fully understood.

Once an avalanche of firings comes to an end, the
conductance of all the bonds with nonzero conductance
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is reduced by the average conductance increase per bond,
�g �

P
ij;t�gij�t�=Nb, where Nb is the number of bonds

with nonzero conductance. The quantity �g depends on �
and on the response of the brain to a given stimulus. In this
way our electrical network ‘‘memorizes’’ the most used
paths of discharge by increasing their conductance,
whereas the less used synapses atrophy. Once the conduc-
tance of a bond is below an assigned small value �t, we
remove it, i.e., set it equal to zero, which corresponds to
what is known as pruning. This remodeling of synapses
mimics the fine tuning of wiring that occurs during ‘‘criti-
cal periods’’ in the developing brain, when neuronal activ-
ity can modify the synaptic circuitry, once the basic
patterns of brain wiring are established [20]. These mecha-
nisms correspond to a Hebbian form of activity-dependent
plasticity, where the conjunction of activity at the presyn-
aptic and postsynaptic neuron modulates the efficiency of
the synapse [24]. To insure the stable functioning of neural
circuits, both strengthening and weakening rules of
Hebbian synapses are necessary to avoid instabilities due
to positive feedback [27]. However, differently from the
well-known long term potentiation (LTP) and long term
depression (LTD) mechanisms, in our model the modula-
tion of synaptic strength does not depend on the frequency
of synapse activation [19,28,29].

The external driving mechanism to the system is im-
posed by setting the potential of the input site to the value
vmax, corresponding to one stimulus. This external stimu-
lus is needed to keep the system functioning and therefore
mimics the living brain activity. We let the discharge
evolve until no further firing occurs; then we apply the
next stimulus. Figure 1 shows the electrical signal as a
function of time: the total current flowing in the system is
recorded in time during a sequence of successive ava-
lanches. Data show that discharges of all sizes are present
in the brain response, as in self-organized criticality where
the avalanche size distribution scales as a power law [5,30].
The strength of the parameter �, controlling both the
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increase and decrease of synaptic strength, determines the
plasticity dynamics in the network. For large values of �
the system strengthens more intensively the synapses car-
rying current but also very rapidly prunes the less used
connections, reaching after a short transient a plateau
where it prunes very few bonds. On the contrary, for small
values of � the system takes more time to initiate the
pruning process and slowly reaches a plateau. The number
of active (nonpruned) bonds asymptotically reaches its
largest value at the value � � 0:03 (inset of Fig. 1). This
could be interpreted as an optimal value for the system
with respect to plastic adaptation.

Since each avalanche may trigger the activity of a high
number of neurons, large currents flow through the system,
therefore after Np stimuli the network is no longer a simple
square lattice due to pruning, but exhibits a ladderlike
pattern with few lateral connections. This complex struc-
ture constitutes the first approximation to a trained brain,
on which measurements are performed. These consist of a
new sequence of stimuli at the input site, by setting the
voltage at threshold, during which we measure the number
of firing neurons as a function of time. This quantity
corresponds to the total current flowing in a discharge
measured by the electromagnetic signal of the EEG. We
have evaluated the size distribution of neural avalanches,
that is, the total number of neurons involved in the propa-
gation of each stimulus. This distribution exhibits power-
law behavior, with an exponent equal to 1:2� 0:1, quite
stable with respect to parameters (Fig. 2). We have also
simulated the brain dynamics on a square lattice with a
small fraction of bonds, from 0 to 10%, rewired to long
range connections corresponding to a small-world network
[31–33], which more realistically reproduces the connec-
tions in the real brain. Figure 2 shows the size distribution
scaling with an exponent 1:2� 0:1 for a system with 1%
rewired bonds and a different set of parameters �, Np,
vmax. Conversely, for the input site chosen at random in the
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FIG. 2 (color online). Log-log plot of the distribution of ava-
lanche size n�s� (L � 1000, � � 0:03 and 0.08, Np � 10,
vmax � 6) for the square lattice (lines) and the small-world
lattice (*, L � 1000, � � 0:05, Np � 1000, vmax � 8) with
1% rewired bonds. The data are averaged over 10 000 stimuli
in 10 different configurations. The dashed line has a slope 1.2.
For � � 0:3 and random input site the slope is 1.5.
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system, the scaling exponent changes and becomes 1:5�
0:1 (Fig. 2).

In order to compare with medical data, we calculate the
power spectrum of the resulting time series, i.e., the square
of the amplitude of the Fourier transform as function of
frequency. The average power spectrum as a function of
frequency is shown in a log-log plot with the parameters
� � 0:03, Np � 10, �t � 0:0001, vmax � 6 and a lattice
of size L � 1000 (Fig. 3). We see that it exhibits a power-
law behavior with the exponent 0:8� 0:1 over more than 3
orders of magnitude. This is precisely the same value for
the exponent found generically on medical EEG power
spectra [34,35]. We also show in Fig. 3 the magnetoelec-
troencephalography (similar to EEG) obtained from chan-
nel 17 in the left hemisphere of a male subject, as measured
in Ref. [35], having the exponent 0.795.

We have checked that the value of the exponent is stable
against changes of the parameters �, vmax, �t, and Np, and
also for random initial bond conductances. Moreover, the
scaling behavior remains unchanged if the input site is
placed at random in the system at each stimulus. For ��
0 the frequency range of validity of the power law de-
creases by more than an order of magnitude. Figure 3 also
shows the power spectrum for a small-world network with
1% rewired bonds and a different set of parameters �, Np,
vmax: the spectrum has some deviations from the power law
at small frequencies and tends to the same universal scaling
behavior at larger frequencies over 2 orders of magnitude.
The same behavior is found for a larger fraction of rewired
bonds.

In real systems neurons have a leakage, namely, the po-
tential decays exponentially in time with a relaxation time
�, i.e., dv�t�

dt � ��v�t�, with � � 1=�. Leakage has been
considered in our model and the same scaling behavior
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FIG. 3 (color online). Power spectra for experimental data and
numerical data (L � 1000, � � 0:03, Np � 10, vmax � 6) for
the square lattice (middle line) and the small-world lattice
(bottom line, L � 1000, � � 0:05, Np � 1000, vmax � 8)
with 1% rewired bonds. Spectrum for the square lattice � �
0:3 and leaky neurons (*, � � 0:01). The experimental data (top
line) are from Ref. [19] and frequency is in Hz. The numerical
data are averaged over 10 000 stimuli in 10 different network
configurations. The dashed line has a slope 0.8.
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recovered (Fig. 3). However, for � 	 10 (i.e., for stronger
leaking), the low frequency part of the spectrum appears to
be frequency independent and the scaling regime is recov-
ered at high frequencies with an exponent in agreement
with previous results.

In the mature living brain synapses can be excitatory or
inhibitory, namely, they set the potential of the postsynap-
tic membrane to a level closer or farther, respectively, to
the firing threshold. We have introduced in our model this
ingredient: each synapse is inhibitory with probability pin

and excitatory with probability 1� pin. We have studied
the power spectrum for a range of value of pin. For a den-
sity up to 10% of inhibitory synapses the same power-law
behavior is recovered within error bars. For increasing
density the scaling behavior is progressively lost and the
spectrum develops a complex multipeak structure for
pin � 0:5. Furthermore, the size distribution exhibits an
exponential behavior even for very small densities of in-
hibitory synapses. These results suggest that the balance
between excitatory and inhibitory synapses has a crucial
role on the overall behavior of the network, similar to what
can occur in some severe neurological and psychiatric
disorders [36].

The stability of the spectrum exponent suggests that a
universal scaling characterizes a large class of brain mod-
els and physiological signal spectra for brain controlled
activities. Medical studies of EEG focus on subtle details
of a power spectrum (e.g., shift in peaks) to discern be-
tween various pathologies. These detailed structures, how-
ever, live on a background power-law spectrum that shows
universally an exponent of about 0.8, as measured for
instance in Refs. [34,35]. A similar exponent was also
detected in the spectral analysis of the stride-to-stride
fluctuations in the normal human gait which can directly
be related to neurological activity [16]. Our simple model
is based on SOC ideas: the threshold dynamics ensures
time scale separation (slow external drive and fast internal
relaxation). This dynamics leads to criticality and therefore
power-law behavior [2]. However, the new ingredients of
the model, namely, the plasticity of the synapses, may be at
the origin of the new observed exponent. This work may
open new perspectives to study pathological features of
EEG spectra by including further realistic details into the
neuron and synapsis behavior.
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