
PRL 96, 028106 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JANUARY 2006
Normal Force Exerted on Vascular Endothelial Cells
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Hemodynamic forces play an important role in the normal and pathological behavior of vascular
endothelial cells as recent studies on the shear stress over the endothelium have shown. Based on
computational investigation and scaling analysis, our study shows that the normal force contributes
significantly to the total force on the endothelial cells even in large vessels. Therefore, our study suggests
that the functions of endothelial cells are also affected by the normal forces exerted on them. The effects of
the normal force are more pronounced for smaller vessels and/or less spread cells.
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FIG. 1. An endothelial cell on the inner surface of a cylindrical
vessel.
Hemodynamic forces play a pivotal role in the normal
and pathological behavior of vascular endothelial cells. A
plethora of studies, mainly in the last two decades, has
attributed the behavior, or changes in the behavior, of the
endothelium as a result of one of the two components of the
hemodynamic force, i.e., as effects of the shear stress. For
example, the production of prostacyclin and nitric oxide
was found to be affected by the type of shear stress on the
endothelium [1,2]. Shear stress was also found to increase
the endothelial hydraulic conductivity through signal
transduction [3] and to regulate occludin content and
phosphorylation [4]. The ability of endothelial cells to
induce adhesion and migration of flowing neutrophils
was found to be affected by the magnitude of shear stress
in the presence of tumor necrosis factor a [5]; this ability
was also found to be affected by oscillatory shear stress
[6]. The endothelial surface layer (glycocalyx) acts as a
mechanotransducer of the fluid shear stress to the actin
cortical cytoskeleton of the endothelial cells [7]. The bio-
mechanical forces also affect the endothelial structure and
function such as the permeability to macromolecules, lip-
oprotein accumulation, and the repair near branch points
[8]. In addition, shear stress acting at the endothelium
surface was found to produce rapid deformation of stable
intermediate filament networks [9]. Thus, the influence of
the second component of the hydrodynamic force on the
endothelium, i.e., the normal force or pressure, has been
overlooked. This study shows that the normal force con-
tributes significantly to the total force on the endothelial
cells even at large vessels. Therefore, our study suggests
that the behavior of endothelial cells in capillaries, arterio-
les, and venules as well as in arteries and veins is also
affected by the normal force exerted on them.

To investigate the shear and normal force over vascular
endothelial cells in vessels with diameter comparable or
larger to the size of the cell, we consider Stokes flow of a
Newtonian fluid around a solid spherical-cap protuberance
in a cylindrical vessel of radius R as shown in Fig. 1. We
emphasize that since the cell size is a few microns, i.e.,
O ��m�, if we consider flow in capillaries (with a typical
06=96(2)=028106(4)$23.00 02810
diameter of 8 �m) as well as in arterioles and venules
(with a typical diameter of 10–140 �m) [10], we have to
explicitly consider the curvature of the vessel wall. In
addition, due to the small size of the cell and/or the vessel,
the assumption of Stokes flow is well justified [10–12].
The assumption of the Newtonian surrounding fluid is
rather well justified based on recent results for the similar
problem of leukocyte adhesion in cylindrical vessels which
showed that the difference in modeling the surrounding
fluid as either Newtonian or non-Newtonian is rather small
[13]. We emphasize that the intercell influence is weak due
to the fast decay of the perturbation force on the cell and
the large intercell distance with respect to the cell size [11].
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FIG. 2. The total force Fx exerted on the cell as a function of
the cell size ~a=R for spreading angles �0 � 5�; 10�; 20�;
. . . ; 120� (increments of 10�). The inset shows the same varia-
tion for small and moderate angles �0 � 5�; 10�; 20�; . . . ; 50�.
(Note that �1wall is the undisturbed shear stress on the vessel wall
far from the cell.)
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FIG. 3. Relative importance of the normal force Fnx with
respect to the shear force Fshear

x exerted on the cell versus the
cell size ~a=R for the same set of parameters as in Fig. 2.
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Thus, our simplified model is able to capture the important
physics of the complicated realistic problem.

The Stokes flow around the cell may be described by the
boundary integral equation

u � �
1

4��

Z
S
�S � f ��T � u � n�dS; (1)

where � is the viscosity of the surrounding fluid (e.g., see
[14]). This equation relates the velocity u at each point on
the boundary S as a surface integral of the force vector f
and the velocity u over all points on the same boundary.
(Note that the tensors S and T are known functions of
geometry [14], while the unit normal n points into the
domain volume surrounded by the boundary S.) For the
current problem the surface S consists of the solid surface
Ss of the cell and the microvessel wetted by the surround-
ing fluid as well as the fluid surface Sf of the vessel’s inlet
and outlet far away from the cell. The relevant boundary
conditions are u � 0 on the solid boundary Ss, and u � u1

or f � f1 on the fluid boundary Sf, where f1 is the force
associated with the undisturbed Poiseuille flow u1 far from
the cell. The numerical solution of the boundary integral
equation (1) is achieved through the spectral boundary
element method [15,16].

The cell is modeled as a spherical cap whose size is
specified by its volume V or equivalently by the radius ~a of
a spherical volume V � �4�=3�~a3. Because of the vessel’s
cylindrical shape, the spreading angle at the intersection of
the cell surface with the vessel surface varies with the
azimuthal angle. For a given size ~a=R of a spherical-cap
cell, the relationship between the spreading angle � and the
azimuthal angle � may be determined by the spreading
angle �0 at� � 0�. (In this study, �0 is defined from within
the cell; i.e., for a fully spread cell �0 � 0�, while a non-
spread cell has �0 � 180�; the azimuthal angle � is mea-
sured with respect to the positive x direction depicted in
Fig. 1.) Note that for a given cell volume V, the two
dimensionless parameters of the current problem, i.e.,
~a=R and �0, are independent.

Figure 2 shows that the total force Fx exerted on the cell
along the flow direction increases with the cell size ~a=R for
any spreading angle as well as with the spreading angle �0

for moderate and large cell sizes. The increase is much
more pronounced at large cell sizes and spreading angles
due to the resulting higher blocking to the vessel flow. For
small cell sizes, increasing the spreading angle from small
values the total force Fx decreases up to �0 	 50� as
shown in the figure’s inset; for higher values of �0 the total
force increases with the spreading angle.

To investigate further on the nature of the force exerted
on the cell, we separated the total force on the cell into its
two components, i.e., the shear force Fshear

x and the normal
force Fnx . The relative contribution of the two force com-
ponents to the total force is shown in Fig. 3. For large
vessels (i.e., small ~a=R) the shear force Fshear

x contributes
02810
more to the total force than the normal force Fnx , but the
contribution of the normal force cannot be neglected espe-
cially at large spreading angles. (For example, even for
~a=R! 0 the normal force on the cell is 30% of the shear
force for �0 � 60�, and close to 56% for �0 � 120�.) As
the vessel radius decreases (i.e., ~a=R increases), the rela-
tive contribution of the normal force increases and at large
cell sizes ~a=R becomes dominant. The increase of the
relative contribution of the normal force with the cell
size is much faster for large spreading angles. (For �0 �
120� and ~a=R � 0:9, Fnx is more than 4 times greater than
the shear force.)

To understand further the nature of the shear and normal
force on the cell, we provide a scaling analysis for these
two forces as functions of the cell size and the spreading
angle. Since our interest is to understand the increase of the
normal force contribution as the vessel radius decreases
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from large values, our scaling analysis is formally valid for
small cell sizes ~a=R.

The shear force Fshear
x on the cell is proportional to the

shear stress on the cell �c and the cell’s surface area Sc. For
small spreading angles �0 and small cell sizes ~a=R, the
cell’s surface area Sc is proportional to the contact region
Ac 
 ‘x‘y, where ‘x and ‘y are the length and the width of
the cell, respectively, while for our problem ‘x 
 ‘y. Based
on the cell’s volume, we have V 
 ~a3 
 ‘x‘y‘z where the
cell’s height ‘z 
 ‘x tan�0 
 ‘x�0 for small angles; thus
‘x 
 ‘y 
 ~a��1=3

0 , ‘z 
 ~a�2=3
0 , and Sc 
 ~a2��2=3

0 . The
shear stress �c on the cell is proportional to the undisturbed
shear stress on the vessel wall far from the cell �1wall. Thus
for small angles and cell sizes, the shear force on the cell
scales as

Fshear
x 
 �cSc 
 �1wall ~a

2��2=3
0 : (2)

The scaling analysis predicts that the shear force Fshear
x

decreases with increasing the spreading angle due to the
associated decrease of the cell’s surface area Sc. This
conclusion is in agreement with our numerical results for
angles up to �0 	 70� shown in the inset of Fig. 4; for
higher �0 the shear force shows a monotonic increase with
the spreading angle as seen in Fig. 4.

The normal force Fnx on the cell may be divided into two
distinct components. The first term Fn1

x arises from the
undisturbed pressure gradient acting on the cell. For small
spreading angles �0 and small cell sizes ~a=R, the pressure
gradient in the flow direction scales as �1wall=R. The corre-
sponding pressure change over the cell scales as �p1 


�1wall‘x=R
 �
1
wall�~a=R��

�1=3
0 . The force component Fn1

x is
proportional to �p1 and the frontal area of the cell, Af 


‘y‘z 
 ~a2�1=3
0 . Therefore, for small cell sizes and small

spreading angles the first normal force component scales as
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FIG. 4. The shear force Fshear
x exerted on the cell as a function

of the cell size ~a=R. The spreading angle �0 varies from 70� to
120� in increments of 10�. The inset shows the same variation
for small and moderate angles 5�; 10�; 20�; . . . ; 70�.
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Fn1
x 
 �p1Af 
 �

1
wall

~a3

R
; (3)

i.e., it is independent of the spreading angle. The other
component of the normal force Fn0

x arises from the distur-
bance of the base flow owing to the presence of the cell.
The pressure change �p0 for this term scales as �1wall�0,
and thus the associated normal force scales as

Fn0
x 
�p0Af 
 �

1
wall ~a

2�4=3
0 : (4)

The component of the normal force due to the undisturbed
pressure gradient Fn1

x is negligible at very small cell sizes
due to its ~a=R dependence but becomes the dominant
component as the cell size increases. On the other hand,
the base normal force component Fn0

x is negligible com-
pared to the dominant pressure gradient component Fn1

x at
moderate and large cell sizes; only for small cell sizes is
Fn0
x expected to affect the normal force on the cell. For

example, for all angles studied in this Letter, the normal
force is proportional to ~a3=R for moderate cell sizes due to
the pressure gradient component Fn1

x ; on the other hand,
for small ~a=R our numerical results show that Fnx 
 ~a2, in
agreement with our aforementioned analysis on the base
normal component Fn0

x . The influence of the spreading
angle �0 on the normal force Fnx is shown in Fig. 5; in
contrast to the shear force, Fnx increases monotonically
with both the cell size ~a=R and the spreading angle �0;
the increase is much more pronounced at high cell sizes
and spreading angles.

Based on our analysis presented above, the explanation
for the behavior of the two force components is now
straightforward. At small cell sizes, the decrease of the
total force Fx on the cell with increasing spreading angle
for small and moderate angles �0 (shown in the inset of
Fig. 2) is caused by the dominant shear component Fshear

x
and thus by the associated decrease of the cell’s surface
area. The rapid increase of Fx at large cell sizes and
spreading angles shown in Fig. 2 results mainly from the
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FIG. 5. The normal force Fnx exerted on the cell as a function
of the cell size ~a=R for the same set of parameters as in Fig. 2.
The inset shows the same variation for small cell sizes ~a=R.
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normal force Fnx exerted on the cell. At small cell sizes
~a=R! 0, the relative importance of the normal force with
respect to the shear force exerted on the cell scales as
Fnx=Fshear

x 
 �2
0 based on Eqs. (2) and (4); i.e., it increases

with the spreading angle as shown in Fig. 3. At larger cell
sizes, the rapid increase of the ratio Fnx=Fshear

x results from
the contribution of the pressure gradient normal force Fn1

x .
For all cell sizes ~a=R, the contribution of the normal

force on the cell cannot be neglected, especially for less
spread cells as shown clearly in Fig. 3 even though the
normal force may change nature as the cell size varies. At
moderate and large cell sizes, the pressure gradient normal
force Fn1

x contributes significantly to the total force on the
cell and even becomes the dominant component at small
vessels (see Fig. 3). At very small cell sizes ~a=R (or at large
vessel radius for a given cell), Eq. (2) shows that the shear
force Fshear

x is independent of the vessel radius R; the same
is true for the normal force since in this case the pressure
gradient normal force Fn1

x is negligible and thus Fnx is
dictated by its base pressure component Fn0

x which is
independent of the vessel radius as Eq. (4) reveals. Thus,
for large vessels the curvature of the vessel’s wall can be
neglected (i.e., one may model the vessel as a plane).
However, even in this case, the contribution of the normal
force Fn0

x should be taken into account in the determination
of the total force on the cell as Fig. 3 shows for ~a=R! 0.
We emphasize that the base pressure component Fn0

x re-
sults from the anomaly of the vessel surface due to the
presence of the endothelial cell and thus exists for any
vessel (see our scaling analysis above).

The conclusions above are in direct contrast to the
common practice of previous studies which attribute the
operation of endothelial cells to the shear stress exerted on
them, and thus neglect the normal force contribution. (For
example, see Refs. [1–9] while additional references may
be found in these publications.) Since both normal and
shear forces can affect the stretching and bending of the
cell membrane (see references on cell membranes, e.g.,
[17]), our study suggests that both the normal and the
pathological behavior of endothelial cells are affected by
the normal force exerted on them. We hope that our study
motivates experiments, both in vitro and in vivo, to identify
the effects of the normal force on the functions of the
endothelial cells in blood vessels, especially from small
arteries and veins down to capillaries where the contribu-
tion of the normal force is expected to be significant and/or
dominant due to its pressure gradient component. For
moderate and small size vessels, it would be better for
in vitro experiments to approximate the vessel as a tube
rather than as a parallel plate device, since the latter device
02810
underestimates the true normal force on the cells by pro-
viding flow blocking along only one direction, i.e., the
distance of the plates.
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