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The dynamics of vesicles under a shear flow are analyzed analytically in the small deformation regime.
We derive two coupled nonlinear equations which describe the vesicle orientation in the flow and its shape
evolution. A new type of motion is found, namely, a “vacillating-breathing’” mode: the vesicle orientation
undergoes an oscillation around the flow direction, while the shape executes breathing dynamics. This
solution coexists with tumbling. Moreover, we provide an explicit expression for the tumbling threshold.
A rheological law for a dilute vesicle suspension is outlined.
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Deformable entities under flow, like blood cells, or their
biomimetics counterparts, represented by vesicles, reveal
interesting dynamics, such as tank-treading [1] and tum-
bling [2,3]. In recent years nonequilibrium vesicle dynam-
ics have received an increasing amount of interest both
theoretically [1-4] and experimentally [5,6]. This interest
is motivated by the fact that these systems constitute
relatively simple models for the flow and viscoelastic
behavior of real cells. Understanding the various intricate
dynamics of individual vesicles under nonequilibrium con-
ditions is an essential step in order to make progress in the
study of their flow in various geometries, their collective
behaviors, their rheological properties, and so on.

Biological and biomimetic flows in which we are inter-
ested here belong to the small Reynolds number limit
where hydrodynamics are described by the Stokes equa-
tions. Despite the linearity of these equations, dynamics of
vesicles belong to a class of highly nonlinear and nonlocal
problems due to the free boundary character (the mem-
brane shape is not known a priori).

By focusing on the relatively small deformation limit
[7-9] of vesicles under shear flow, an analytical theory
with an arbitrary viscosity contrast between the interior
and the exterior of the vesicle is presented. We derive a
nonlinear evolution equation (written for a complex vari-
able) for the shape evolution as a function of relevant
parameters. The evolution equation contains two dynami-
cal variables: (i) the orientation angle of the vesicle in the
flow, (ii) the amplitude of the shape deformation. This is an
extension of the Keller-Skallak (KS)[10] model which
assumed a shape-preserving solution. Relaxing this as-
sumption we discover a new type of motion that we shall
refer to as a vacillating-breathing mode: the vesicle orien-
tation executes oscillations around the flow direction,
whereas the long and short axes undergo a breathinglike
motion. Moreover, we analyze tumbling and show marked
differences with the KS analysis. Outcomes from the study
of rheology are briefly outlined.

The vesicle is submitted to a linear shear flow Uy =
(vy, 0,0), where vy is the shear rate. The flow outside (and
inside) the vesicle is described by the Stokes equations
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where u and p are the velocity and the pressure fields,
respectively, and 7 designates the viscosity. The fields
referring to the interior of the vesicle will be denoted
with a bar (for example, p, u...). A = 7/n will designate
the viscosity contrast.

The induced velocity fields outside and inside the vesicle
are given by the classical Lamb solution [11]
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The first term expresses vortex motion in a uniform
pressure field. The second term represents an irrotational
motion which can exist in a field of uniform pressure. The
last two terms are connected with the pressure distribution,
which is represented by p = >, p,, where p, are solid
spherical harmonics. The various functions are given by
[11] (i) in the exterior y_,_; = r " 'Q,, where the Qs
depend on the angular variables only and are decomposed
on an infinite series of surface spherical harmonics. Similar
expressions hold for ¢_,,_; and p_,_; (the angular depen-
dence for these two functions are denoted as S, and T),).
(i1) In the interior the r— dependence is r" with the angular
functions denoted with a bar (according to our convention).
The coefficient of the expansion on spherical harmonics of
the functions Q,, S,, and so on, are determined from
boundary conditions: continuity of the velocity field and
the forces at the membrane, r = rp,,. The normal compo-
nent of the force [12] is given by

F, = k[2H(2H? — 2K) + 2AzH] — 2{H “4)
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where « is the membrane bending rigidity, H is the mean
curvature, K the Gauss curvature, Ay is the Laplace-
Beltrami operator, and {(r,, 7) is a Lagrange multiplier
which enforces the local membrane incompressibility. The
tangential [7] part of the force is given by

F.=—g"Rid; 5)

where g/ are the elements of the inverse matrix of the
metric g;; = R;.R; induced by the two tangential vectors
R;. { is fixed from the projected zero divergence (1 —
n;n;)o;u; = 0, where n; is the ith component of the normal
vector at the membrane.

From now on lengths will be reduced by the vesicle
radius ry (ry designates the radius of a sphere having the
same volume), and time by y_l. The shape of the vesicle
will be parametrized as

r=1+ern (6)

where € is a small parameter. Finally, we require that the
membrane velocity coincide with that of the adjacent fluid
on both sides of the membrane. The contribution of U in
the balance equations contains spherical harmonics of
order 2 only. This automatically implies that to leading
order only Q,, T5,..., and f, survive. Each of these quan-
tities are functions of the spherical harmonics. For ex-
ample,

2
f2 = Z F2my2m(0y d)) (7)
m=-2
where VY,,, are spherical harmonics. It follows that the
vesicle shape evolution to leading order contains only the
functions F»,, Fy;, F»y (and their complex conjugates).
The algebra leading to the final results are technically
involved, and will be reported on elsewhere. The evolution
equation for F,, is found to be given by

_l.Eathz = F22 —h+ 2hA—1(|F22|2 - F%Z) (8)

where A is the membrane excess area defined by A =
47 + A, A being the dimensionless area of the vesicle,

and h = 60,27/15/(32 + 23A).

In this brief exposition we analyze only the motion in
the plane of the shear. In that plane Y,; = 0, and we are
left only with F,y and F,,. Fpy obeys €d,Fyy =
_l.]’lAil(Fzz - F;Z)

It is convenient to rewrite Eq. (8) in terms of a real and
an imaginary part. For that purpose we set Fp, = Re 2%,
The phase is chosen as —24 since, for a shape-preserving
motion, we wish (for the sake of comparison with previous
works) that ¢ coincide with the angle between the long
axis and the shear direction. Extracting the real and imagi-
nary parts from (8), we obtain
2

R :| sin(2¢), 9)

€d,R = h[l —47

€0, = —% + % cos(2¢). (10)
These constitute the basic evolution equations in the small
deformation theory. The second equation describes the
overall orientation of the vesicle in the flow, while the first
one governs the shape evolution. It is interesting to note
that to leading order both for droplets [8,9], as well as for
capsules [13], the evolution equations are linear. This
markedly differs from the vesicle problem where, to lead-
ing order, the evolution equation (8) is nonlinear. This is
traced back to the constraint of local area incompressibil-
ity. Similar types of equations have been suggested re-
cently on the basis of heuristic arguments [3], and have
reproduced successfully some numerical results. While the
dependencies with ¢ are identical, differences are found
regarding the variable R, and a full discussion will be
presented elsewhere. It is noteworthy that Eqs. (9) and
(10), are free of « (or, more precisely, free of y =
nyry/k, an appropriate dimensionless parameter).
Indeed, y is fixed by A from the demand that the shape
evolution must conform to the available excess area. The
insensitivity to y of the vesicle tilt angle in a shear flow was
also reported numerically even for a large enough defor-
mation [1,2].

In the pure tank-treading regime where the shape is
fixed, we have

OS,[(BA + 32) 15A}
120 2

(11)

For A = 1 we obtain Seifert’s result [7]. The above solu-

tion is subject to the condition \/Z/Zh <1, or, equiva-

lently,
32 120 (27
A<A = ——+—,— 12
¢ 23 23 \15A (12)

Above A, steady solutions cease to exist, and tumbling
takes place. We define the reduced volume as 7=
[V/(4m/3)]/(A/4m)3/? (it follows that A = dafr~%/3 —
1], V is the enclosed volume). For 7= 1, A, diverges as
1/+/7 — 1. For a given A one finds from (11), by using the
expression of A, that ¢y ~ /A, — A (the “+” solution
is stable and the “—"" one is unstable, which is a signature
of a saddle-node bifurcation). Figure 1 shows the boundary
between a tank-treading regime (lower part) and the tum-
bling one. The results following from the KS theory are
also shown (they reproduce well the full numerical results
[2]). Also shown are the results obtained from an expan-
sion ¢y = 7w/4 — (231 + 32)/140,/15A /27 (valid for a
small argument) from which we determine the tumbling
threshold by setting ¢, = 0. Surprisingly, the expanded (or
extrapolated) result provides a significantly better agree-
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FIG. 1. The tumbling boundary. Solid line: present calculation.
Dashed line: the KS theory. Dotted line: the present theory
obtained by expansion of .

ment with the KS theory even for 7 = 0.9 (corresponding to
A=1).

Tumbling [10] may be qualitatively understood under a
shape-preserving assumption (R = R;). We then obtain

from Eq. (8) the Jeffery [10] form
_ |2 %0
15A 231 +32°

13)

For B <1/2 (A > ),) the tank-treading regime ceases to
exist in favor of tumbling via a saddle-node bifurcation.
Interesting enough dynamics are revealed when the
assumption of a shape-preserving motion is relaxed [in
which case Egs. (9) and (10) are solved numerically].
The tumbling regime is accompanied with an oscillation
of the long and short axes (qualitatively similar to Fig. 4).
Comparison of the KS theory to the present analysis re-
veals significant differences. difr/dt is plotted as a function
of cos(2¢) (Fig. 2). This leads, for the KS theory, to a
straight line [as can be seen from Eq. (13)]. Taking into
account the deformability of the vesicle, a marked differ-
ence is found as shown on Fig. 2 (full line). A linear fit,

a4 = —% + Bcos(2y),

cos(2¥)

FIG. 2. ¢ as a function of cos(2¢). Solid line: present calcu-
lation. Dashed line: the KS theory. Dashed-dotted line: a linear
fit from the full calculation. Parameters are A = 1 and & = 0.3.

dictated by the KS theory, produces the dashed-dotted line
in Fig. 2. This fit conveys the impression that the effective
rotation frequency (represented by A) is smaller (in abso-
lute value) than the KS one. The same holds for B (repre-
senting the slope).

A systematic analysis of (9) and (10) reveals the exis-
tence of a new kind of motion (Fig. 3): the vesicle aligns
along the flow, by executing asymmetric oscillations,
whereas the long and short axes show a breathing motion
(Fig. 4). This mode is referred to as a vacillating-breathing
(VB) mode. It coexists with the tumbling one, each having
its own basin of attraction. Tumbling occurs if the initial
conditions (for R and ¢) are large enough (say of order 1),
while the VB mode prevails for small initial values (around
0.1). The coexistence of the two solutions may be inferred
from the following reasoning.

The set (9) and (10) admit another fixed point ¢, = O,
Ry = h. The linear stability of this fixed point (with per-
turbations ~e®’) yields

N YOS
w==xi A (l A ) (14)
o is purely imaginary provided that 4h>/A < 1. This
condition is nothing but the one fixing the tumbling do-
main. In other words, w is purely imaginary in the tum-
bling regime. This entails that the system behaves about
s = 0 as an oscillator with a period of order 27/ w. We
have checked that this provides a good agreement with the
full nonlinear solution. Note that even a perturbation the-
ory can correctly capture coexistence, as is documented in
bifurcations theory [14].

Following FEinstein [15], we evaluate the volume average
of the stress tensor (actually Einstein evaluated the dissi-
pation) which contains a contribution stemming from the
applied shear field, and another due to the presence of the
vesicle. This leads us to the following effective viscosity
(for a dilute enough suspension):

5 23\ — 16 / (4h2 A)
c=mn|1+ 1
Neft n[ 2¢23/\ n 32 (15)
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FIG. 3. The behavior of the angle as a function of time for the
VB mode. Parameters are A = 1 and & = 0.4.
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FIG. 4. The behavior of the long and short axes as functions of
time for the VB mode, with same parameters as in Fig. 3. We
never observed full interchange of short and long axes.

where ¢ is the volume fraction of the vesicles. Interesting
limits are recovered. In the spherical case (A = 0) and
when A — oo (rigid spheres) we obtain n.; = [l +
%qb], which is the famous Einstein result [15]. This result
was initially developed (to our best knowledge) for spheri-
cal rigid particles. Actually, this result is more general,
since it remains valid for A =0 even for an arbitrary
viscosity contrast. This is a consequence of the fact that
for a sphere (be it fluid inside or not) the enclosed fluid
executes a global solidlike motion (this is a trivial solution
and it is unique, owing to the Stokes linearity). An alter-
native expression for meg IS Ney = M1 + 5¢/2 —
dA(23)1 + 32)/167]. Thus, with increasing the excess
area, the effective viscosity should decrease according to
this law. This is not devoid of experimental testability. For
A = 0.5 (corresponding to only 4% in relative excess area
where a perturbative scheme is expected to make a sense),
we find for A =1 and 2, s = [l + 2¢] and 94 =
n[1 + 1.5¢], respectively. These are significant enough
shifts. Note that we prefer, to some extent, the form (15)
since it tells us some important information: the last term
vanishes exactly at the tumbling threshold (for 4h> = A).
This raises naturally the question about what happens
beyond. For example, what is the behavior of effective
viscosity in the tumbling regime, the VB one, and so on?
In short, we should connect the underlying dynamics to the
rheological properties. We hope to investigate this matter
further in a future paper.

Several issues deserve future consideration, however.
Firstly, thermal fluctuations may play a role [7], and espe-
cially for low enough shear rates. Recent experiments by
Kanstler and Steinberg [6] reported on this aspect in the
tank-treading regime. Their average orientation angle fits
remarkably well with deterministic equations [7]. In this
respect, the fluctuation-free theory is expected to deliver

the essential features regarding the average. Notable ef-
fects can, however, be detected due to fluctuations. A
precise study of the interplay between shear and fluctua-
tions, both for individual dynamics and rheology, should be
addressed in the future. Secondly, while the role of y is
unessential for the fluctuation-free tank treading, this
seems not clear yet for other regimes. Finally, higher order
expansions are necessary in order to have access to a wider
domain of applicability of the theory.
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