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Generic Phase Diagram of Active Polar Films
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We study theoretically the phase diagram of compressible active polar gels such as the actin network of
eukaryotic cells. Using generalized hydrodynamics equations, we perform a linear stability analysis of the
uniform states in the case of an infinite bidimensional active gel to obtain the dynamic phase diagram of
active polar films. We predict, in particular, modulated flowing phases and a macroscopic phase separation
at high activity. This qualitatively accounts for experimental observations of various active systems, such
as actomyosin gels, microtubules and kinesins in vitro solutions, or swimming bacterial colonies.
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Active materials are a challenging class of systems
driven out of equilibrium by an internal or an external
energy source. Examples of active systems are self-
propelled particle assemblies in bacterial colonies [1,2],
or the membrane and the cytoskeleton of eukaryotic cells
[3]. The cell cytoskeleton is a network of long filaments
made by protein assembly, interacting with other proteins
[4] which can, among other things, cross-link or cap the
filaments. Motor proteins, myosins, kinesins, or dyneins
use the chemical energy of adenosinetriphosphate (ATP)
hydrolysis to ‘‘walk’’ along the filaments, and exert
stresses that deform the network [5], leading to an active
behavior. The active character of the cytoskeleton plays a
major role in most cell functions such as intracellular
transport, motility, and cell division.

The cell cytoskeleton has a rich and complex dynamical
behavior [5–9]. Self-organized patterns, such as asters,
vortices, and rotating spirals, microscopic and macro-
scopic phase separations (‘‘superprecipitation’’ [10])
have been observed as a function of motor and ATP con-
centrations in a thin film [5]. This two-dimensional ge-
ometry gives, for example, a good description of the thin
lamellipodium of a cell spreading or moving on a substrate.
Some of these structures have recently been explained
theoretically [11,12], but a full phase diagram of active
polar films is still missing.

The passive viscoelastic properties of the cytoskeleton
are similar to that of a physical gel made of the cross-linked
semiflexible filaments. Recently, Kruse et al. [12] have
proposed a generalized hydrodynamic theory to describe
macroscopically the active character of incompressible
polar gels, based on conservation laws and symmetry con-
siderations. In this Letter, we use the generic model of
Ref. [12] to study the stability of compressible active polar
films. We perform a linear stability analysis of the uniform
states in the case of an infinite two-dimensional geometry,
and obtain the dynamic phase diagram. Our results quali-
tatively account for the experimental observations on vari-
ous active systems, such as actomyosin gels, microtubules,
and kinesin solutions in vitro or swimming bacterial colo-
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nies. We choose the example of infinite actomyosin films
that we consider as two-dimensional and noninteracting
with the environment. Such an example could be realized
by a freely suspended film such as those studied for liquid
crystals. We consider the long wavelength limit, and all
variables are implicitly averaged over the film thickness.
The actin network has a local macroscopic polarization
given by a unitary vector p � �cos�; sin��. This describes
degenerate parallel boundary conditions at the film inter-
face, but also equivalently normal boundary conditions
with a splayed state. Since the film thickness can vary,
the two-dimensional actin network is compressible, even
though the three-dimensional material is not. The gel has a
weakly fluctuating density c�r� � c0 � ��r�. The average
density c0 can be set to 1 by rescaling the various coef-
ficients of the free energy given in Eq. (1) below. As a first
approximation we neglect the interactions with the solvent
and use a one fluid model.

The free energy of the gel, up to quadratic order, couples
the polarization p to the density fluctuation �:
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The splay and bend elastic moduli are assumed to be equal
(K1 � K3 � K) for the sake of simplicity. The Lagrange
multiplier hk enforces the constraint p2 � 1. The sponta-
neous splay term leads to boundary terms that are irrele-
vant in the infinite system size limit [13]. The variation of
the free energy with density is characterized by the positive
compressibility � and by the positive coefficient � asso-
ciated with the density fluctuation correlation length; w is a
coupling constant between density fluctuations and splay.
The molecular field, conjugate to the polarization is h� �
��F=�p� with coordinates �hk; h?� parallel and perpen-
dicular to the polarization. The free energy is similar to that
of a ferroelectric nematic liquid crystal when the order
parameter n does not have a fixed length [14,15].
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The gel motion is described by the two-dimensional
velocity field v. The strain rate tensor is u�� � �@�v� �
@�v��=2, and the vorticity tensor !�� � �@�v� �
@�v��=2. The conservation equation of the gel is written
as @t�� @��1� ��v� � 0.

The gel is driven out of equilibrium by continuous and
homogeneous input of energy, characterized by the chemi-
cal potential difference �� between ATP and its hydroly-
sis products, which we assume to be constant.

The gel dynamics is described by the linear hydrody-
namic equations for active polar gels of Ref. [12]. The
constitutive equations for the mechanical deviatory stress
tensor ��� and the rate of change of the polarization
D
Dt p� �

@p�
@t � �v�@��p� �!��p� read, at long time

scales when the gel behaves as a viscous liquid,
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We neglect here the geometric nonlinearities introduced in
[12]. The rotational viscosity � and the coupling constants
between flow and polarization �; �� are standard liquid
crystal parameters [16]. The active contributions to the
mechanical stress and to the rate of change of the polar-
ization are proportional to �� and are characterized by the
coefficients 
 , �
 , and �. This set of constitutive equations is
completed at low Reynolds numbers by the force balance:
@����� ������ � 0. Locally, there are two forces act-
ing on the gel, the deviatory stress tensor ��� and the
pressure � � �F

�� � wr � p� ��� ���.
It is observed experimentally [17] and predicted by one-

dimensional models [6] that the overall effect of myosin II
motors on actin solutions is contractile. This corresponds
to negative values of both 
 and �
 . The molecular motors
also have an effect on the rate of change of the polarization
described by �; if � > 0 the polarization is enhanced. This
seems to be observed experimentally (zipping effect in
Ref. [18]). We consider here only ordered polar phases
with a unitary polarization vector p, and we ignore this
active coupling (setting � � 0) for simplicity [19].

In order to discuss the accessible steady states of an
infinite active gel film, we first study the states of uniform
polarization and velocity gradient. These asymptotic states
are nonequilibrium states, and cannot therefore be obtained
by minimizing a free energy functional. In a two-
dimensional geometry, the hydrodynamic equations of
motion give 11 scalar equations for the 11 independent
variables x � �; �; h�; v�; ���; . These equations of mo-
tion have two types of homogeneous steady states: a static
state, where the velocity gradient u�� vanishes and the
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polarization is uniform and oriented in a direction �0, and a
flowing state with a finite velocity gradient and a uniform
polarization. In two dimensions, the most general steady
flow with a constant velocity gradient is a superposition of
two simple shear flows in two perpendicular directions x
and y. The only nonvanishing components of the velocity
gradient are @xvy and @yvx. We consider here for simplic-
ity only one component shear flow for which @yvx � 0.
The velocity is then along the y direction, and the polar-
ization angle �� is such that cos�2��� � 1=� (we assume
j�j> 1). This flowing state is the analog, for an infinite
compressible gel, of the flowing state obtained in a con-
fined geometry in [13] and to the rotating spirals in a
cylindrical geometry described in [12]. It confirms the
possibility of obtaining spontaneous flows in polar active
materials.

The stability of the two homogeneous states is studied
by introducing a small perturbation at point r, at time twith
a wave vector k and a growth rate s: x � x0 � x1 exp	st�
ikr
, where x0 is a steady state solution. The equation for
the perturbation x1 can formally be written in matrix form
Mx1 � 0, and the possible growth rates of the perturbation
are determined from the equation det�M� � 0. This is a
quadratic equation in s with two roots denoted by s�; s�

with Re�s�� � Re�s��. The sign of Re�s�� gives the stabil-
ity limit of the steady state homogeneous phase.

We are able to give a complete discussion of the stability
of the uniform steady states only with respect to a periodic
perturbation in the quasi-one-dimensional case where we
do not allow for a y dependence (ky � 0). The treatment of
the fully general two-dimensional problem requires nu-
merical work. However, most of the physics can be ex-
tracted from the quasi-one-dimensional case, which we
present hereafter; the numerical study allows us to extend
our conclusions to the general two-dimensional case.

We first analyze the stability of the static state, fixing all
the parameters of the active gel introduced above, except
for the Franck constant K and the active stress 
��. As
there is no flow in the system, there is one single direction,
given by the polarization, which we choose as the y axis
(�0 � =2). The numerical study of the two-dimensional
problem reveals that the maximum of Re	s��kx; ky�
 lies
on the axis ky � 0, for any value 
�� � 
���K�, with

���K�> 0. In this regime, it is therefore sufficient to
consider one-dimensional perturbations in the x direction.
The growth rates are then solutions of

2	�as2 � s	�2	�� Kab��k2 � 2	�� 
���a��� 1�


� bK�k4 � 	b�K�� w2� � 
������ 1�
k2

� 
������ 1� � 0; (4)

where we have redefined kx � k and where a and b
are dimensionless functions of the parameters: a � 2 	

��

����� ��� and b � 2 	
��

�1���2

2 . It is useful to analyze first
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the passive case where 
�� � 0. If K � w2=�, Re�s�� is
maximum and negative for k � 0 and the active gel is
stable. If K <w2=�, one can check that Re�s�� is maxi-
mum and positive when k � kc � 0. The uniformly or-
dered phase is locally unstable with respect to a finite
wavelength longitudinal mode transverse to the ordering
direction. It follows that in this region of the phase diagram
there necessarily exists an ordered modulated phase char-
acterized by a periodic polarization. The precise symmetry
of this passive phase (striped, hexagonal, or cubic phase)
has been discussed in [14,15] for the case of ferroelectric
nematic liquid crystals. We now consider the effect of the
activity on this instability. For 
��< 0, the static state is
unstable at zero wave vector (both growth rates are real and
s�s� < 0), with respect to the flowing state, as found in
Ref. [13]. For 
��> 0, the uniform state is unstable with
respect to a finite wavelength longitudinal mode, trans-
verse to the polarization direction when the Franck con-
stant is small enough K <Kc�
���. The function
Kc�
��� can be analytically calculated from Eq. (4)
in this regime and is plotted in Fig. 1. For 
��>

���K�> 0, a two-dimensional numerical analysis is
required and reveals that for K <Kc�
��� [evaluated by
numerically computing the sign of Re�s��], there are two
independent most unstable wave vectors kc1,and kc2.

We now discuss the flowing state (
��< 0), which
we believe to be relevant for cytoskeleton dynamics.
(If 
��> 0, the flowing state is unstable at any wave
vector.) The numerical study of a two-dimensional pertur-
bation shows that the maximum of the growth rate
Re	s��kx; ky�
 is obtained for a wave vector k perpendicu-
lar to the polarization, for any value 
�� � 0. It is there-
fore sufficient to consider an effective one-dimensional
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FIG. 1 (color online). Dynamic phase diagram of an active
polar film. The transition line between regions B� and C� is the
line 
���K�; the transition between regions B�, B�, and C�

and regions A� and A� is the line Kc�
���; the transition
between regions B� and C� is the line ��p�K�.
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problem where spatial variations are allowed only along
the unstable direction orthogonal to p. The growth rates are
in this case solutions of

2	�as2 � s	�2	�� Kab��k2 � 2	�0
 � bK�k4

� b�K�� w2�k2 � ikdw
��� 
������ 1� � 0; (5)

where �0 is an effective compressibility, and d is a dimen-
sionless function of the parameters d � 2 	

�� ��� 1�=2�

�� and �0 � �� d�
����� 1�=2.
For K <Kc�
��� [evaluated by numerically comput-

ing the sign of Re�s�� from Eq. (5)], the uniform state is
unstable with respect to a finite wavelength mode. The
value of the critical Franck constant Kc diverges for an
active stress 
��c such that �0�
��c� � 0. At lower
values of the active stress, the flowing state is always
unstable. The most unstable wave vector jkcj decreases
with 
�� and vanishes if the active stress is smaller than a
critical value 
��p�K�. Note that, in this regime of nega-
tive active stress, Im�s�� � 0 and the instability is oscil-
latory, as opposed to the regime 
��> 0.

The results of the stability analysis are summarized in
the phase diagram of Fig. 1. A full analysis of the nonline-
arities is necessary to predict the symmetry of the dynamic
equilibrium states. This would require an exhaustive study
of all the possible quadratic and cubic terms in the pertur-
bations in the equations of motion, which seems out of
reach. We can nevertheless infer qualitatively the structure
of the different phases.

In regions B� and B� of the phase diagram, the insta-
bility occurs at finite wave vector. It is similar to the
instability of the passive system described in [14,15]: it
favors splay in the system, which can appear in either a
striped or a ‘‘lattice’’ (cubic, hexagonal, or triangular)
phase. Because of the outbreak of polarization gradients,
the strain rate tensor cannot vanish and the system flows.
The continuity of the velocity field imposes extra con-
straints and does not allow for the formation of domain
walls. This, together with the results of [12], suggests that
in the lattice phases, each elementary cell contains a spiral-
like structure with a rotating flow. This structure is not
compatible with the hexagonal symmetry: the only pos-
sible lattice phases have therefore cubic or triangular sym-
metries sketched on Fig. 1.

In region C�, the system is unstable for k � 0, and thus
its behavior depends on boundary conditions. We expect a
macroscopic phase separation since the effective com-
pressibility �0 becomes negative. In region C�, the exis-
tence of two independent unstable modes suggests that an
oblique phase prevails, even if nonlinear terms could
a priori select only one of the unstable modes.

Our analysis has been presented in terms of the actin
cytoskeleton, but it is general enough to be applied to any
viscoelastic, polar, and active material. We now briefly
discuss two other examples. One should keep in mind
that our model does not include noise, be it thermal or
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intrinsic (due to the stochastic activity of motors, actin
polymerization, etc.) and that the predicted ordered phases
could be disordered in the presence of noise.

Systematic quantitative data describing the phases of
in vitro actomyosin solutions as a function of the contrac-
tility (associated with changes in myosin II and/or ATP
concentrations) and therefore of 
�� do not seem to be
available yet. However, both disordered vortex flowing
phases [11,17], which could correspond to region B�,
and phase separations (superprecipitation [10], corre-
sponding to region C�) are observed in experiments or
obtained by numerical simulations. Microtubules and ki-
nesin solutions also belong to the class of materials de-
scribed by our model. They are viscous, polar, and active.
The phase diagram obtained in this Letter qualitatively
agrees with the phases observed in vitro for microtubules
and kinesin motors in two dimensions [5]: when the motor
concentration is increased, a flowing phase of spirals ap-
pears (B); for higher motor concentrations, the spirals
become growing asters which progressively separate
(C�); for even higher concentrations microtubules bundles
are formed (C�).

A similar behavior is observed in bacterial colonies:
experiments on two-dimensional colonies of B. Subtilis
[2] show a bacterial flow composed of rotating whirls of
swimming bacteria. This bacterial turbulence could be
described by a disordered version of the cubic phase
(B�, C�, or B�) predicted by our model. Indeed, these
bacteria are rodlike shaped, oriented by their flagella, and
therefore polar; in a coarse-grained picture, a colony can be
viewed as a viscoelastic gel; last, they consume chemical
energy (O2) and hence are active. The alternative model of
[1] also predicts an intrinsic flow instability for self-
propelled particle assemblies. This instability differs
from the one discussed here in that it has no threshold.
The main differences with our description are, first, that
our model in this one fluid version cannot impose a sponta-
neous velocity of the gel with respect to the background
fluid and, second, our model describes a compressible gel,
this feature being crucial to trigger the instabilities. A
thorough comparison between the two theories needs a
two fluids description and is underway.
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138101 (2001).

[7] H. Y. Lee and M. Kardar, Phys. Rev. E 64, 056113 (2001).
[8] J. Kim et al., J. Korean Phys. Soc. 42, 162 (2003).
[9] T. B. Liverpool and M. C. Marchetti, Phys. Rev. Lett. 90,

138102 (2003).
[10] T. Sekine and M. Yamaguchi, J. Biochem. 59, 195 (1966);

Y. Nonomura and S. J. Ebashi, Mechanochem. Cell Motil.
3, 1 (1974).

[11] S. Sankararaman, G. I. Menon, and P. B. Sunil Kumar,
Phys. Rev. E 70, 031905 (2004); M. C. Aronson (unpub-
lished).

[12] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K.
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