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Spontaneous Patterning of Confined Granular Rods
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Vertically vibrated rod-shaped granular materials confined to quasi-2D containers self-organize into
distinct patterns. We find, consistent with theory and simulation, a density dependent isotropic-nematic
transition. Along the walls, rods interact sterically to form a wetting layer. For high rod densities, complex
patterns emerge as a result of competition between bulk and boundary alignment. A continuum elastic
energy accounting for nematic distortion and local wall anchoring reproduces the structures seen
experimentally.
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From nanometer-sized molecules forming liquid crys-
tals to timber floating on a river, rod-shaped materials
pervade our everyday existence. Onsager first demon-
strated that hard-core steric interactions suffice to order
rods in thermal equilibrium [1]. Above a critical concen-
tration, orientational entropy is sacrificed for gains in trans-
lational entropy; therefore, crowding alone induces a
temperature-independent isotropic-nematic (I-N) transi-
tion [2]. In this entropically driven transition, the kinetic
motion of the rods serves as a mechanism for adequately
sampling phase space. While thermal excitation mixes
microscopic particles, macroscopic rods require an exter-
nally applied energy for randomization. But collisions be-
tween granular particles, in contrast to their classical coun-
terparts, are inelastic. Excited granular materials, there-
fore, readily violate equipartition of energy and exhibit
non-Maxwellian velocity distributions [3]. Such driven
dissipative systems are far from equilibrium and need not
evolve to states of maximal configurational entropy. For
example, prior studies utilizing macroscopic rods focused
on jammed or other metastable states [4,5]. Nevertheless,
some aspects of granular rod behavior resemble their mi-
croscopic counterpart. A density dependent nematic to
smecticlike transition was previously observed for granular
rods, for both vertical and horizontal vibrations [5].
However, the relation of ordering seen in granular rods to
that in liquid crystals remained unknown.

Here we report on finite-sized driven dissipative granular
systems of rods in steady state that share many properties
with lyotropic liquid crystals at equilibrium. By using
excluded volume scaling predicted by mean field theories,
our data give a single normalized transition density for all
rod aspect (length-to-diameter, L=D) ratios and densities
tested. However, excluded volume interactions in the bulk
cannot explain all rod behavior because confining bounda-
ries also strongly influence rod ordering. For relatively low
rod densities, experimental results for rod alignment and
density profiles with respect to the wall strikingly resemble
excluded volume-based theoretical predictions [6]. As the
rods become dense, rod ordering in the bulk nematic com-
petes with rod ordering along the surrounding walls. This
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frustration creates distinct yet easily reproduced patterns.
By modeling the system as a liquid crystal undergoing the
elastic deformations of splay and bend subject to a simple
wall interaction [7–9], we show that the patterns depend on
the relative magnitude of wall and bulk energies.

Rod-shaped granular materials confined to quasi-2D
containers were vertically vibrated. Stainless steel wire,
0.08 cm diameter, was cut into rods of L=D � 20, 40, and
60. Containers were either circular (radius R � 15 cm or
R � 7 cm) or square (29 cm diagonal). The chamber
height to rod diameter ratio was 20, which restricted the
rods to lie mainly flat. Due to the quasi-2D nature of these
experiments, rod densities were scaled to the area of the
container bottom, A, so that the area fraction is � �
NLD=A, where N is the number of rods. A monolayer of
rods lying flat and fully covering the container bottom
corresponds to � � 1.

The rods were shaken with a sinusoidal acceleration of
50 Hz and a peak acceleration of 4 times gravity. The
magnetic field of the shaker was minimized by distancing
the rod chamber from the shaker. Electrostatic forces were
reduced by using aluminum chamber components and
applying an antistatic coating to nonmetallic surfaces.
The apparatus was carefully leveled. To randomize initial
conditions, rods were dropped into the containers from
above before experiments commenced. Images of the
rods in motion were captured by a high speed digital
camera. The position and orientation of each rod were
found by an image processing algorithm, developed in
MATLAB 6.5. The counting accuracy was close to 100%
for low density systems and greater than 75% for samples
as dense as � � 0:6.

Unlike the infinite bulk modeled by Onsager’s mean
field theory [1], rigid boundaries confine our experimental
system. We first investigate the I-N transition away from
these strong wall influences. By measuring the angular
correlation of the rods with respect to the nearest wall
[wall-rod correlation, g2�r�], we distinguish rods affected
by the side boundaries from those that were not. We define
an effective ‘‘bulk’’ when g2�r� � 0, which occurs at
distances r=L > 0:5 from the wall. We will later discuss
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in detail g2�r� and other parameters in relation to ordering
along the boundaries.

To measure rod ordering in the bulk, we characterize
alignment via the order parameter S � hcos�2�i�i, where �i
is the angle of the ith rod with the nematic director. In prac-
tice, the order parameter and director are found for an ar-
bitrary Cartesian coordinate system via the matrix Q�� �

h2u��i�u��i� � ���i, where u��i� and u��i� are the coor-
dinates of the unit vector specifying the direction of the ith
rod. The eigenvalues of Q give �S, and the eigenvectors
give the director and its perpendicular vector. A perfect
nematic corresponds to S � 1. Standard convention de-
notes an isotropic system as S � 0, but, by the way S is
defined, an isotropic system will have S > 0 that ap-
proaches 0 only as N ! 1 [10]. To distinguish rod order-
ing from this finite-number effect, we evaluated S of finite
numbers of noninteracting rods using 2D Monte Carlo
(MC) simulations, where the number of rods in the simu-
lations matched those in experiments.

We first tested the dependence of orientational order on
the area fraction, �. Typical experimental results are illus-
trated in Fig. 1, where L=D � 40 in the R � 7 cm con-
tainer. In the top of Fig. 1, the rods in the bulk (highlighted)
appear to align as � increases. The bottom of Fig. 1 shows
S as a function of � as well as S from the MC simulations.
For small �, S is relatively low and coincides with S from
simulations, indicating that the experimental system is
isotropic. As � increases, S rises and deviates from the
values derived from simulations, denoting the transition to
an ordered nematic state. Conforming to the convention
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FIG. 1. Dependence of bulk orientational order on rod density
for a single rod aspect ratio L=D � 40 in the R � 7 cm con-
tainer. Top: Representative images for area fractions � � 0:15
and 0.45. Dashed lines mark where g2�r� � 0, and rods with
midpoints within these dashed lines were labeled ‘‘bulk.’’
Bottom: Order parameter S as a function of � for averaged
experimental data (�) with standard deviations. Monte Carlo
simulations (4) of noninteracting isotropically oriented rods are
included to distinguish rod ordering from the finite-number
effect on S.
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that S � 0 in an infinite isotropic system, we henceforth
subtract the results of the MC simulations from experi-
mental data.

We then fixed � and tested the dependence of orienta-
tional order on the rod aspect ratio, L=D. Experimental
results for L=D � 20 and 60 at � � 0:6 in the R � 15 cm
container are shown in Fig. 2 (top). Though the same mass
is present in both containers, L=D � 60 rods appear more
ordered than L=D � 20 rods for this value of �. The inset
in the bottom of Fig. 2 shows S vs � for all L=D and
container sizes and shapes. As L=D increases, the transi-
tion to an ordered state shifts to lower �.

By plotting S versus the scaled area fraction � � �L=D,
the transition curves for different L=D collapse to a single
curve [Fig. 2 (bottom)]. This scaling is consistent with
Onsager’s mean field result, which assumes that the I-N
transition stems only from steric interactions between
neighboring rods [1]. Within experimental error, the tran-
sition appears continuous. The dashed line is a linear least
square fitting of the data in the transition region, and, by
extrapolating this line to S � 0 [10], we estimate that the
critical transition occurs at � � �� between 6 and 9. For
comparison, Onsager’s mean field model applied to an
infinite 2D system of rods predicts a second order I-N
transition at �� � 3�=2 � 4:71 [11], and 2D computer
simulations with periodic boundary conditions estimate
�� between 6.5 and 8 [10]. We performed a similar analysis
on our data that included both bulk and boundary layer
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FIG. 2. Dependence of bulk orientational order on rod aspect
ratio. Top: Representative images for L=D � 20 and 60 at � �
0:3 in the R � 15 cm container. As in Fig. 1, rods within the
dashed lines delineate bulk. Bottom: Consolidated plot of S vs
scaled area fraction � � �L=D, for R � 7 cm container:
L=D � 20 (4), 40 (�); R � 15 cm container: L=D � 20 (�),
60 (�); square container: L=D � 20 (5), 40 (�). The dashed
line is a linear least squares fitting of the data in the transition
region. By extrapolating this line to S � 0, we estimate the
transition density between 6 and 9. Inset: Same data plotted as
S vs �. All solid lines are guides for the eye.
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rods. The measured S for the nematic state is systemati-
cally lower (due to cancellation by the alignment of the
rods along orthogonal walls), but, within experimental
error, the location of �� remains unchanged.

While the side boundaries do not affect ��, they pro-
foundly influence rod ordering in other ways. Rods near a
wall tend to align parallel along it. We assessed this align-
ment using the wall-rod angular correlation function
g2�r� � hcos	2�#w � #�r��
i, where #�r� is the angle of
a rod located at distance r away from the wall, as described
by the shortest line from rod midpoint to wall, and #w
denotes the vector locally tangent to the wall.

The left panel in Fig. 3 shows g2�r� for L=D � 20 in the
R � 7 cm container at � � 1:5 (circles) and � � 9 (tri-
angles). Experiments show an initially high g2�r� that de-
cays as r increases. For comparison, the dashed line rep-
resents the MC calculated g2�r� for a single rod interacting
only via hard-core repulsions with the curved wall. Steric
interactions with the wall significantly restrict the possible
orientations available for a rod closer than L=2 to the wall.
Experimental values of g2�r� closely follow the single rod
curve for small r; however, these values deviate as r in-
creases. Furthermore, as � increases, g2�r� diverges earlier
and remains elevated for larger r. We also measured the
number density ��r�, normalized with respect to bulk den-
sity, of rod midpoints (Fig. 3, right). The measured ��r� is
less than 1 for r=L < 0:5, which signifies a depletion of rod
midpoints next to the wall. Finally, ��r� obtains a local
maximum around r=L�0:6 before returning to bulk
values.

Onsager’s approximation for excluded volume interac-
tions has been applied to hard spherocylinders in contact
with a hard flat wall by Poniewierski [6], and results have
been confirmed by simulation [12]. Although this analysis
was performed for a 3D system contacting a planar wall,
the experimental features in Fig. 3 show striking similar-
ities. The profiles for g2�r� and ��r�, however, can be
difficult to interpret since geometrical constraints tightly
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FIG. 3. Wall-rod correlation function g2�r� and normalized
density profile ��r� versus distance r from wall to rod midpoints
for L=D � 20 in the R � 7 cm container at � � 1:5 (circles)
and � � 9 (triangles). Data were smoothed by a moving average
filter with a span of 3. The dashed line represents calculated
g2�r� for a single rod interacting with the wall via hard-core
repulsions. The insets show g2�r

0� and ��r0� versus distance r0

from wall to rod ends.
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couple rod orientation and position for rod midpoints close
to the wall. By analyzing distances r0 based on the closest
end of each rod to a wall, rod orientation and position are
decoupled, thereby simplifying g2�r0� and ��r0� profiles
[6]. Figure 3 (left inset) shows a clear � dependent increase
in g2�r0� for rod ends near the wall. And, in contrast to the
depletion layer seen for rod midpoints, a strong wetting
layer becomes apparent, with an approximate fourfold
increase in ��r0� for small r0 which decays rapidly to
bulk values around r0=L � 0:3 (Fig. 3, right inset).

Although many similarities exist between the hard-core
interactions of rods with straight versus curved boundaries,
wall geometry significantly affects g2�r�. Rod alignment
with the wall does not penetrate as deeply into the sample
center for curved boundaries, and, interestingly, the thick-
ness of this layer even regresses at very high � (data not
shown). This seemingly unusual behavior can be under-
stood by noting that for �� �� the system must accom-
modate both the orientation of the nematic director as well
as the preferred orientation parallel to the surrounding
boundaries. This frustration creates competition between
the rods in the bulk with those at the boundary, which
produces complex patterns, Fig. 4 (left).

Even though the local variations in the experimentally
observed patterns are often on the order of rod dimensions,
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FIG. 4. Elastic deformations of the nematic observed for �
above the I-N transition. Experimental images in square and R �
15 cm containers (left) and results from numeric minimization
of the elastic free energy functional F (right) are arranged with
respect to relative bulk and wall free energies F bulk=F wall, with
(a) F bulk=F wall � 1, (b),(c) � 1, and (d) � 1. This ratio is
modified experimentally by changing L=D or � (see text). A
transition can be made from the patterns seen in (b) and (c) to
those in (d) by either increasing (b) L=D or (c) �.
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we find that these patterns are well approximated by min-
imizing a continuum free energy functional that describes
elastic deformations in ordered liquid crystals [7–9].
Similar methods have been used to study nematic droplets
[13]. Consider a total free energy composed of bulk and
wall contributions, F � F bulk F wall. In the bulk, splay
and bend deformations contribute to the distortion energy:

F bulk �
1

2

Z
A
K1�r � n�2  K3�r � n�2dxdy; (1)

where n�x; y� � 	cos#; sin#
 is the unit vector describing
the local nematic director, and K1, K3 are constants for
splay and bend, respectively. Note that contributions from
twist deformations are absent in this 2D system. The elastic
constants have been linked theoretically to the molecular
details of the nematic, generally becoming larger with
increasing L=D or� [9]. Often, however, the two constants
are comparable in magnitude, and here we shall use the
simplifying approximation K1 � K3 � K [8]. To account
for interactions favoring rod orientations locally parallel to
the wall, we consider the line integral over the container
perimeter P:

F wall �
1

2
C
Z
P

sin2�#w � #�ds; (2)

where C is a positive constant with units of line tension,
and #w describes the vector locally tangent to the wall, nw.
From Eq. (2), it becomes clear that F wall depends not only
on anchoring strength C but also on wall curvature and
circumferential length.

Figure 4 (right) shows the results of numeric minimiza-
tion of the elastic free energy functional F using a relaxa-
tion method with simulated annealing [14], where the local
tangent to each curve represents the orientation of n at that
point. Similar patterns found in experiment [Fig. 4 (left)]
and calculations are grouped and arranged according to the
relative ratio of the minimized F bulk=F wall. Notice that as
nematic ‘‘stiffness’’ increases compared to wall anchoring
(increasing K=C), F bulk=F wall decreases, because the sys-
tem reduces the cost of nematic deformations in the bulk at
the expense of misalignment with the wall.

Experimentally, by holding wall geometry constant and
varying � and L=D, we changed nematic stiffness K and
the ratio K=C, thus modifying F bulk=F wall [8]. Differing
combinations of � and L=D give rise to equivalent pat-
terns, as seen in Figs. 4(b) and 4(c) corresponding to
F bulk=F wall � 1. By raising nematic stiffness though in-
creasing L=D [Fig. 4(b)] or � [Fig. 4(c)], we transition to
the pattern seen in Fig. 4(d), where F bulk=F wall � 1. At
the other extreme, where F bulk=F wall � 1, alignment
with the wall is favored at the expense of nematic defor-
mations. By changing wall curvature, we can strengthen
wall anchoring and the penalty for wall misalignment, as
seen in Fig. 4(a). For a wide range of parameters, we not
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only find that the experimental patterns match the theoreti-
cal model results but also that F bulk=F wall is sufficient to
describe the whole range of nematic deformations wit-
nessed in experiments. However, as may be expected for
confined nematics [15], line and point defects are visible.

In extending the normal application of liquid crystal
continuum theories by using them to describe nonequilib-
rium, strongly confined systems of rods, we show that the
macroscopic granular rods in this steady state system share
many properties with thermally equilibrated lyotropic liq-
uid crystals. The benefit of using a granular system, as
opposed to one composed of microscopic rods, is that
interactions can be purely hard-core, and individual rods
are easily visualized. This system may be useful for study-
ing defects and other aspects of lyotropic liquid crystals
that might be difficult to probe experimentally.
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