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Anisotropic Dielectric Function in Polar Nanoregions of Relaxor Ferroelectrics
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The Letter suggests treating the infrared reflectivity spectra of single crystal perovskite relaxors as fine-
grained ferroelectric ceramics: locally frozen polarization makes the dielectric function strongly aniso-
tropic in the phonon frequency range and the random orientation of the polarization at nanoscopic scale
requires taking into account the inhomogeneous depolarization field. Employing a simple effective
medium approximation (the Bruggeman symmetrical formula) turns out to be sufficient for reproducing
all principal features of room temperature reflectivity of Pb(Mg; 5Nb,/3)O;. One of the reflectivity bands
is identified as a geometrical resonance entirely related to the nanoscale polarization inhomogeneity. The
approach provides a general guide for systematic determination of the polar mode frequencies split by the

inhomogeneous polarization at the nanometer scale.
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In recent years, there has been enormous effort in study-
ing single crystals with intrinsic nanoscopic inhomoge-
neity, since such materials often show very interesting
properties. It was even proposed that the clustered, inho-
mogeneous states encountered, for example, in high-T.
cuprates, colossal magnetoresistive manganites, nickel-
ates, cobaltites, diluted magnetic semiconductors, or ferro-
lectric relaxors, should be considered as a new paradigm in
condensed matter physics [1]. In the case of relaxors, the
peculiar dielectric properties of relaxor materials were
associated with the presence of small polar clusters—so
called polar nanoregions (PNR’s)—already in the pioneer-
ing work of Burns and Dacol [2]. However, because of
their small size and random nature, we still lack a clear
understanding of their size distribution, thickness, and
roughness of their boundaries, their connectivity, shape
anisotropy, distribution of the associated dipolar moments,
their fractal self-similarity, their dynamics, and so on.
PNR’s are often represented as small islands submerged
in a nonpolar matrix, possibly appearing and disappearing
again in time. On the other hand, the recent piezoelectric
scanning microscopy investigations [3] of the surface of
PbTiO3-doped relaxors rather invoke a picture of a fine,
hierarchical, and essentially static ‘“‘nanodomain” struc-
ture. It strongly suggests that the common perovskite re-
laxors are actually quite densely filled by quasistatic polar
nanoregions, and that the former picture with a prevailing
nonpolar matrix can perhaps be appropriate only at high
temperatures around the so-called Burns temperature [2,4].

Throughout this Letter we will have in mind com-
mon perovskite relaxors like Pb(Mg;/3Nb,/3)05; (PMN),
Pb(Zn1/3Nb2/3)O3, Pb(SCI/2Tal/2)O3, (Pb, La)(Zr, TI)O3,
and similar systems. Various experiments show that the
dipolar moments in these relaxors are caused mainly by
ionic off-center displacements. It is difficult to get reliable
information about the directional distribution of these dis-
placements, but the amplitude of the relevant ion displace-
ments (e.g., Pb in PMN) is quite well defined [5,6] and it
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is of the same order as in normal ferroelectrics. We will
assume that these local displacements are more or less
parallel within each PNR (one would have trouble defining
PNR if it were not the case), and that the PNR’s are at the
time scale of our interest essentially static [7] (i.e., the ions
vibrate around their displaced but fixed positions, except
perhaps for those at PNR boundaries). Under such con-
ditions, the homogeneous frozen polarization (dipole mo-
ment density) Pr can be well defined within each PNR, as
well as the locally homogenous dielectric function e(w),
describing the contribution of polar vibrations inside a
given PNR.

It is obvious that the cubic (and in harmonic approxi-
mation isotropic) environment of ions in perovskite struc-
ture is broken by their off-center displacements. Since the
displacements are aligned within a given PNR, parallel
(IIPp) and perpendicular (LPg) ionic fluctuations are
strongly inequivalent. In fact, it is quite likely that the
parallel fluctuations feel a more stiff potential, as in the
case of usual ferroelectrics. Within a given PNR, one may
thus expect that the ionic contributions make the e(w)
tensor strongly anisotropic. For simplicity, we will assume
that the anisotropy is uniaxial, so that the e(w) tensor has
only two principal components, € and € (parallel and
perpendicular to Pg). The aim of this Letter is to demon-
strate that infrared (IR) reflectivity spectra of common
perovskite relaxors can be rather well understood by taking
into account this anisotropy.

In the view of the above considerations, it seems rea-
sonable to analyze the influence of PNR on the polar pho-
non modes under the following simplifications: (i) PNR’s
are frozen at phonon frequencies, (ii) the PNR size is much
smaller than the IR wavelength, (iii) the volume of the
sample is fully covered by PNR’s, (iv) the shapes of PNR’s
are roughly spherical, (v) Pr and e(w) within a given PNR
are homogeneous, (vi) €(w) has uniaxial anisotropy (prin-
cipal axis || Pg), (vii) orientations of principal axes are
random, and (viii) all PNR’s have the same e(w).
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It is known that the reflectivity calculations for the
samples with dielectric inhomogeneities (spatial fluctua-
tions of dielectric function) at scales smaller than the
wavelength of the probing radiation can be performed
within the effective medium approach [8]. In this approach,
the medium is fully characterized by a homogeneous
(averaged) effective dielectric function, €., which could
be in principle evaluated directly from the original hetero-
genous dielectric function. In view of the simplifications
already made, it seems sufficient to use here a rough
approximation, known as the effective medium approxi-
mation (Bruggeman symmetrical formula for binary com-
posites), where €. is given by the implicit equation [9]

2 €1 €t
3 €] + 2€eff

1 € — e
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The IR reflectivity of a thick (opaque) sample is then
evaluated from the standard formula
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where w,, 1oj and wy 10; 18, respectively, the transverse
and the longitudinal frequency of the jth mode polarized
along the local polarization direction, y4, to; and ya, 1o,
are the corresponding damping parameters and € , is the
corresponding component of the high frequency permittiv-
ity tensor. The €, tensor component determined by E;
modes is defined analogously.

As an example, let us now apply the model [Egs. (1)—
(3)] to our room temperature reflectivity data of PMN, [11]
reproduced in Fig. 1. The real and imaginary part of the
resulting effective permittivity is shown in Fig. 2 and it is
obviously very similar to that obtained from the standard
multioscillator fit technique [11]. Clearly, the three princi-
pal bands (below 100, near 220, and at 550 cm™ ') corre-
spond to the three TO polar modes of the average cubic
structure. Each of these bands has a tail or a bump on the

As a matter of fact, we exploit here the equivalence [10] of

(@)

our model with that of a dense random binary composite of
spherical particles with isotropic dielectric functions equal
to € and €, and the relative appearance of 1:2 volume
ratio [10].

It can be expected that the principal polar modes of
PNR’s in perovskite relaxors are those originating from
the 3 F;, polar modes of the parent cubic structure. The
uniaxial anisotropy induced by the frozen polarization split
each of these triply degenerate modes in an A; + E; pair
(we assume a strong anisotropy limit leading to Co,, sym-
metry for any Pg direction). The principal components of
the dielectric tensor can be thus conveniently parameter-
ized assuming the factorized form [11] for the generalized
damped harmonic oscillator model:
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FIG. 1 (color online). IR reflectivity spectra of the PMN single
crystal. Circles stand for the room temperature data of Ref. [11]
(mistakenly denoted as 20 K there), solid line stands for the fit
with the model (1)—(3), parameters are given in Table I.

E, component

A, component

—— Effective

N
o
I

-Im(1/e)

o
&)
1

0.0 it
— T T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900

Wave number (cm™)

FIG. 2 (color online). Spectra of the real (a) and imaginary (b)
part of the permittivity and of the imaginary part of the inverse
permittivity (c) calculated from the model defined by Eqgs. (1)—
(3) with the adjusted parameters given in Table I. Solid line
corresponds to the effective macroscopic permittivity €,
dashed and dotted lines correspond to the € and € components
of the local permittivity, respectively.
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high frequency side. It is natural to assign the principal
peaks to the doubly degenerate E; components and the
high frequency wings to the stiffened A; components of the
three polar modes. Similarly, the positions of the corre-
sponding three LO bands can be roughly read out from the
plot of the imaginary part of the inverse permittivity.

A complete set of mode parameters, as obtained by
adjusting the model [Egs. (1)—(3)] to the measured reflec-
tivity spectrum, is given in Table 1. The high frequency
dielectric tensor was assumed isotropic, since even in
PbTiO; its two principal components differ by less than
1% [12]. It was set to €] = € o = 3.75, deduced from
the available (average) refractive index data of PMN [13].
Furthermore, the visual agreement was much improved by
adding a weak mode near 335 cm™! (introduced as iden-
tical in both €] and € ). The agreement is fairly good and
the number of the parameters is adequate, except for the
frequency of the overdamped E;(TO1) soft mode, which
obviously cannot be reliably determined from data mea-
sured above 20 cm™~!. The value selected here makes the
total phonon contribution to the effective static dielec-
tric permittivity of the order of 1000, which is in qualita-
tive agreement with our previously published analysis
[11,14,15]. (There is an additional strong relaxation in
the GHz frequency region [14] which is most likely due
to the fluctuations of PNR boundaries, but it is not in the
focus of this Letter.) All the parameters appear quite real-
istic—the mode frequencies are reasonably close to that of
PbTiO;, given for comparison in Table I, and the trends are
in agreement with the smaller frozen polarization [16] in

TABLE I. Intrinsic frequencies and damping parameters (w,
v) of polar modes of PMN obtained from the fit of the reflec-
tivity spectrum shown in Fig. 1 with the model defined by
Egs. (1)-(3) (€),0 = €1,0 = 5.75), in comparison with the
corresponding mode frequencies of room temperature PbTiO5.

PMN (this work) PbTiO; (Ref. [12])

Label ol[em™']  y[em™!] label o [cm™!]
E;(TO1) 17 34.7 E (TO1) 87.5
E,(LO1) 120.4 19.8 E (LO1) 128.0
E,(TO2) 221.4 53.9 E (TO2) 218.5
2LO) 334.1 56.6
2(TO) 336.0 54.3
E,;(LO2) 409.7 15.1 E (LO2) 440.5
E,(TO3) 545.8 80.5 E (TO3) 505.0
E;(LO3) 714.6 35.8 E (LO3) 687.0
A(TO1) 63.8 32.5 A(TO1) 148.5
A (LO1) 166.6 95.1 A (LO1) 194.0
A,(TO2) 284.0 53.8 A,(TO2) 359.5
2LO) 334.1 56.6
2(TO) 336.0 54.3
A (LO2) 461.5 4.8 A;(LO2) 465.0
A (TO3) 603.8 117.3 A (TO3) 647.0
A (LO3) 757.2 160.1 A;(LO3) 795.0

PMN with respect to the spontaneous polarization of
PbTiO;.

We do not know for sure the origin of the weak feature
near 335 cm ™!, In principle, the local homogeneous polar-
ization can induce IR activity also for the E; mode derived
from the remaining F,, (silent) optic mode. However, the
IR dielectric strength of this mode in usual ferroelectric
perovskites is known to be extremely weak [12]. Another
possibility is that this spectral feature is related to the
random occupancy on (ABO;) perovskite B sites. As a
matter of fact, there is also a weak IR active mode expected
around this frequency [11] due to the B site short range
ordering of NaCl-type, which activates the R} Brillouin
zone corner mode of the parent cubic structure (antiparallel
vibrations of inequivalent ions at neighboring B sites). The
strength of this mode is determined by a compromise
between its relatively strong intrinsic strength inside of
the ideally ordered regions (Born charges at inequivalent
B sites are quite different) and relatively small degree of
this B site order. This mode was in fact quite clearly seen in
the IR spectra of compounds with a larger degree of B site
order, like PST and similar systems with 1:1 B site stoi-
chiometry [17,18], so that it is perhaps the most likely
interpretation.

The imaginary part of effective permittivity [Fig. 2(b)]
seems to indicate another weak but clear mode with TO
frequency near 400 cm™!. The origin of this mode was a
puzzle since realistic calculations [11] show that no TO
mode is expected around this frequency. Interestingly, the
effective medium model proposed here reproduces this
band without assuming any intrinsic TO frequency near
400 cm™!. Such modes, so called geometrical resonances,
are actually interfacial modes intimately related to the
heterogeneity of the medium, and they are known, for
example, from IR spectra of ceramics of anisotropic ma-
terials [19]. This purely geometric resonance related to the
double reflectivity minimum near 400 cm ™! appears to be
pronounced due to a relatively large splitting of the LO2
mode in comparison with its damping, and it is a generic
feature present in many other relaxor perovskites.

A systematic analyses of IR reflectivity data of other
relaxor perovskites as well as of temperature dependences
within this model are now in progress. In PMN, the fre-
quency of the A;(TO1) mode increases on temperature
lowering and it is obvious that this mode coincides with
that which was denoted soft mode in the previous low
temperature IR [11,14,15] and neutron studies [20]. On
the contrary, the E; component of the TO1 mode seems to
remain rather soft in all perovskite relaxors. Actually, it
would be extremely helpful to develop an appropriate
averaging scheme also for the polar modes in Raman
scattering and inelastic neutron scattering spectra, in order
to form a solid basis for comparison. For example, it seems
to us that Raman bands denoted [21] as A—F could be
related to the polar modes A;(TOI1), A,;(LO3), LOI,
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TO2 + silent, TO3, and LO2 modes, respectively. At the
present stage however, a direct quantitative comparison is
difficult and could be even misleading.

The present model can be modified in many ways. For
example, one may consider an elongation of PNR along the
direction of the frozen polarization or to consider the
contribution of the residual nonpolar matrix, both possible
using the analogical effective medium schemes developed
for ceramics [22]. More interestingly, one can hope to
incorporate a more realistic information about the geome-
try of PNR structure within a more sophisticated effective
medium approach. At the level of the crude approximation
[Eq. (1)], it actually does not matter whether the directions
of the frozen polarization are completely random or
whether they tend to be oriented preferentially along a
family of high symmetry directions (most likely 111 or
100). None of these modifications is expected to have a
drastic influence on the intrinsic phonon frequencies as
determined here, but it is possible that it may explain the
spectra assuming smaller damping parameters.

In conclusion, IR spectroscopy brings evidences of split-
ting of polar optic modes in perovskite relaxors. We de-
duce that at phonon frequencies and at the length scale of
PNR’s, the dielectric function is strongly anisotropic. It is
demonstrated on the PMN crystal case that a simple effec-
tive medium model can reproduce the average permit-
tivity and reflectivity spectra fairly well. The effective
medium approach also explains the pseudo-TO mode
near 400 cm™! as a consequence of nanoscopic heteroge-
neity. It is believed that the model can be used for system-
atically estimating the frequencies of the three principal
polar modes in perovskite relaxors and their A-E; split-
ting due to the underlying polarization, provided the re-
flectivity data are known in a sufficiently broad interval
(201000 cm™1).
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