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We consider the critical temperature in strongly anisotropic antiferromagnetic materials, with weak
coupling between stacked planes, in order to determine the interplane coupling constant from experi-
mentally measured susceptibilities. We present theoretical arguments for a universal relation between
interplane coupling and susceptibility shown numerically by Yasuda et al. [Phys. Rev. Lett. 94, 217201
(2005)]. We predict a more general scaling function if the system is close to a quantum critical point, a
similar relation for other susceptibilities than considered in Yasuda et al., and the validity of these
relations for more general phase transitions.
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Many materials display at low temperatures strongly
spatially anisotropic responses to magnetic or electronic
probes. This fact has motivated the theoretical study of low
dimensional quantum systems in their own right. Solving
one- or two-dimensional quantum systems can be useful to
understand intermediary regimes of temperature in which
fluctuations are dominated by the subsystem of lower
dimensionality. Three dimensionality is effectively re-
stored once the temperature is lowered below the lowest
energy scale characterizing the anisotropy.

For magnetic systems this scale can be the temperature
1=�AFM (kB � @ � 1) below which antiferromagnetic
(AFM) long-range order manifests itself. In this context,
one of the most studied model is perhaps a stacking in three
dimensions of chains or square lattices on each of which a
nearest-neighbor quantum spin-S Heisenberg model HJ
with AFM exchange coupling J > 0 is defined. To model
a strong spatial anisotropy, one assumes that there exists
a nearest-neighbor AFM exchange coupling J0 in the di-
rections transverse to the chains or planes that is much
weaker than J, J� J0 > 0. The three-dimensional quan-
tum Hamiltonian is H3D. Many efforts have been invested
for the last 30 years in calculating the J0 dependence of
1=�AFM [1–10]. In this Letter we address the following
question: Are there some universal relations that relate J0

and some observables of HJ or H3D?
The motivation for this question comes from the work by

Yasuda et al. in Ref. [10] in which the Néel temperature
1=�AFM of H3D, the n-dimensional static staggered sus-
ceptibility ��n�s � �zz�Q; ! � 0;�AFM� of HJ where Q �
� if n � 1 or Q � ��;�� if n � 2, and J0��n�s � 1=�n�J

0�
were computed numerically as a function of 0< J0=J � 1.
In quasi-two dimensions, it was observed that

J0��n�2�
s � 1=�n�2 (1)

converges to a number as J0 ! 0 (not 1=2 as predicted by
mean-field theory [1,2]) that is universal in that it is inde-
pendent of the magnitude of the spin, including the classi-
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cal limit S � 1. Although the evidence is less pronounced,
the same conclusion was reached in quasi-one dimension.

We want to construct a tractable model that reproduces
qualitatively these findings, and we want to understand
how these results can be useful to establish experimentally
the implied universality. We present a theoretical argument
that, as J0=J # 0, the function �n�2 converges to a constant.
Although our scaling argument is too crude to make an
estimate for the deviations away from this universal num-
ber at finite J0=J, it suggests that nonuniversal corrections
induced by quantum fluctuations are of order J0=J, whereas
those induced by classical fluctuations are of order
1=�J�AFM�. We make the following additional predictions.

First, we consider more general AFM models in the
plane, and we consider the case in which, by tuning pa-
rameters, it is possible to tune the planar model close to a
quantum phase transition, so that the zero-temperature
AFM order of the two-dimensional model (without inter-
plane couplings) becomes small. Then, we predict the
scaling function

J0��2�s � F1�c�AFM=�
�2��; (2)

for some scaling function F1, in the limit J0=J # 0, where
��2� is the correlation length of the two-dimensional model
at temperature 1=�AFM and c is a spin-wave velocity
defined below. Note that in the system considered by
Yasuda et al. the planar model is in the renormalized
classical regime so that c�AFM=�

�2� is exponentially small
in c�AFM and converges to zero as J0=J # 0. Therefore,
F1�c�AFM=�

�2� � 0� � 1=�2.
Second, we predict a similar scaling relation that will be

valid for quantities which are easier to access experimen-
tally. The susceptibility ��2�s defined above is that of the
two-dimensional model without the interlayer couplings,
and cannot be measured in most real materials. We define
��3��;�;0 � �zz��;�; 0; ! � 0;�AFM� to be the static suscep-
tibility in the layered system at wave vector ��;�� in the
plane and wave vector 0 perpendicular to the plane at
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temperature 1=�AFM. Then, we predict that

J0��3��;�;0 � F2�c
�3��AFM=�

�3�
�;�;0�; (3)

for some scaling function F2, in the limit J0=J # 0, where
c�3� and ��3��;�;0 are the in-plane spin-wave velocity and
correlation length of H3D at temperature 1=�AFM near
wave vector ��;�; 0�, respectively.

Third, we predict that similar scaling results hold for
other layered models.

In quasi-one dimension [4–9], we expect that similar
scaling results will also hold. This does not, however, help
us understand the results of Yasuda et al. in quasi-one
dimension. The scaling functions F1; F2 imply that the
classical and quantum models will show the same � �1�

only if c�AFM � ��1�. However, as the one-dimensional
Heisenberg model is instead quantum critical, there is a
universal � �1� for the half-integer spin chain, which need
not be the same as that for the integer or classical spin
chains. Thus, the one-dimensional results remain a puzzle;
however, additional simulations on the S � 1 chain do
show deviations in � �1� for sufficiently small J0=J [11],
and further simulations may show a difference between the
half-integer and classical systems.

Physical motivation.—Here, we present a physical mo-
tivation for the results above and a brief microscopic
derivation of the relevant nonlinear sigma model. In the
next section, we show these scaling results using a renor-
malization group (RG) for this nonlinear sigma model. The
reason we use this model is that we want to illustrate the
effects of field renormalization, and the nonlinear sigma
model RG already has a nontrivial field renormalization at
leading order in the coupling constant, while such a renor-
malization is not seen until order �2 (1=N) in a 4� � (large
N) expansion.

Since the interplane interaction is weak, we can treat it
perturbatively at the microscopic level. Following standard
steps, in the absence of the interplane interaction, we can
first derive the partition function for the two-dimensional
O�N� quantum nonlinear sigma model (2D QNLSM) with
field nk�r; ��, where k is a discrete index labeling individ-
ual planes, r is a two-dimensional vector describing coor-
dinates in the plane, and � is imaginary time. The relevant
action for plane k is Sk � S�1�k � S

�2�
k where

S�1�k :�
Z

L�1�k 	
Z �

0
d�

Z L

a
d2r

c
2ag
�@�nk�2; (4a)

S�2�k :�
Z

L�2�k 	 �
Z �

0
d�

Z L

a
d2r

c

a3 Zhh 
 nk: (4b)

Here, the lattice spacing a plays the role of the microscopic
ultraviolet cutoff, i.e., �� 1=a that of an upper cutoff on
momenta. The linear size L of the plane is the largest
length scale of the problem. The derivative @� � �@c�;r�
depends on the spin-wave velocity c in the plane which is
of order Ja. The dimensionless coupling constant g de-
02721
pends on the microscopic details of the intraplane inter-
actions. The dimensionless background field h, where
h � jhj, is the external source for a static staggered mag-
netic field conjugate to the planar AFM order parameter of
the underlying lattice model. It breaks the O�N� symmetry
of Lagrangian (4a) down to O�N � 1� and as such acts as
an infrared regulator. The dimensionless coupling Zh is the
field renormalization constant associated with nk. The use
of the continuum limit within each of the planes labeled by
k is justified if we are after the physics on length scales
much longer than a.

The interplane nearest-neighbor AFM coupling J0 gives
the characteristic interplane spin-wave velocity c0 � J0a
and length scale a0 	 �J=J0�1=2a. The couplings J0; g get
renormalized as discussed below, so the velocity c0 changes
at longer length scales. For a very weak nearest-neighbor
interplain AFM coupling, J0 � J, the physics on length
scales much larger than a but yet not much larger than a0 is
captured by the partition function

Z �
Z
RN

�Y
k

D�nk
	�n2
k � 1�

�
exp

�
�
X
k

Z
Lk

�
; (5a)

Lk � L�1�k �L�2�k �L�3�k : (5b)

The Lagrangian L�3�k that encodes the effect of the micro-
scopic nearest-neighbor interplane AFM interaction J0 is
approximated by

L �3�
k �

J0Z0

2a2 �nk � nn�1�
2; (5c)

where Z0 renormalizes as Z2
h to lowest order in J0=J,

Z0 � Z2
h�1�O�J0=J�
: (6)

This defines the so-called three-dimensional strongly an-
isotropic O�N� QNLSM.

Renormalization group.—Here, we present an RG
analysis of the nonlinear sigma model (5). The most im-
portant result in this section is that the identity (6) is
preserved under the RG flow up to the length scale at
which the scale dependent effective anisotropy (13) is of
order 1.

We perform a RG analysis following Polyakov for con-
venience [12]. In each plane labeled by k, we write

n k � mk�1�
2
k�

1=2 �
XN�1

a�1

eak

a
k: (7)

The field of unit length mk encodes the planar AFM order
expected in the limit g=c # 0, while the N � 1 fields eak
capture the deviations away from the direction mk of
symmetry breaking, i.e., theN � 1 eak form an orthonormal
basis of vectors orthogonal to mk. The N � 1 coefficients

a
k make up the vector 
k. To leading order in an expan-

sion in powers of g=c of the parametrization (7), the field
mk is the slow mode while the N � 1 fields 
a

k represent
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fast modes with characteristic 2-momenta ~�< jpj � �.
Substituting Eq. (7) into Eq. (5) gives the Lagrangian

L�1�k �L�2�k �
c

2ag
��@�
a

k � A
ab
k�


b
k�

2 � �Bak��
2

� Bak�B
b
k��


a
k


b
k �


2
k	

ab�


�
c

a3 Zhh 
mk�1�
2
k�

1=2 (8)

to leading order in an expansion in powers of g=c. TheN �
1 coefficients Bak� are defined by @�mk �

PN�1
a�1 B

a
�e

a
k .

The �N � 1��N � 2�=2 independent coefficients Aabk� �
��@�e

b
k� 
 e

a
k . The RG flows of the dimensionless cou-

plings g, Zhh, and t 	 1=�J�� that follow after integration
over the fast modes 
k in the limit of no interplane
interactions were computed by Chakravarty, Halperin,
and Nelson to leading order in g=c (see Fig. 1) [13]. To
this order, c is unchanged.

To quantify the very weak microscopic interplanar cou-
pling, we define the anisotropy ~� as the ratio of the
importance of L�1�k to L�3�k when the upper cutoff on the
momenta is ~�. By assumption, this anisotropy is strong at
the microscopic level (upper cutoff �),

� � gJ0Z0=J� 1: (9)

Next, we consider the renormalization of L�1�k in Eq. (8)
when h � 0 and of the interplane interaction

L�3�k �
J0Z0

2a2

�
�1�
2

k�
1=2mk � �1�


2
k�1�

1=2mk�1

�
XN�1

a�1

�
a
ke
a
k �


a
k�1e

a
k�1�

�
2

(10)

after averaging over the fast modes 
k. To this end, we
introduce the renormalized values
g

c

tc t

1>α>0 α=0

tt

g

gc

t

g

gc

c

α=1

g

FIG. 1. Phase diagram and RG flows for the 3D QNLSM (� �
1) and 2D QNLSM (� � 0) after Ref. [13]. Conjectured phase
diagram and RG flow for the anisotropic 3D QNLSM (1>�>
0). The shaded regions have long-range Néel order. The figure
for 1>�> 0 shows a two-dimensional slice of the three-
dimensional RG flow, as ~� is changing under this flow.
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1

~g
�

1

g

�
�
~�

�
�1� h
a

k

b
k �


2
k	

abi�; (11a)

1
~t
�

1

t
�1� h
a

k

b
k �


2
k	

abi�; (11b)

~Zh � Zh

�
1�

1

2
h
2

ki � 
 
 


�
; (11c)

at the scale ~� as a result of averaging over the fast modes

k. For �� 1, this average over fast modes is h
a

k

b
l i �

	kl	
ab ln��=~�� g4� coth�g=2t�. Furthermore,

L �3�
k �

J0Z0

2a2

~Z2
h

Z2
h

�mk �mk�1�
2 (12)

from which follows the renormalizations

~� �
�
�
~�

�
3 ~g ~Z0

gZ0
�;

~Z0

Z0
�

~Z2
h

Z2
h

; (13)

so long as ~�� 1.
Let us follow the RG flows encoded by Eqs. (11) and

(13) starting from the initial values g > 0, t 	
1=�J�AFM�<1, and 1� �> 0 [see Eq. (9)] correspond-
ing to a point on the phase boundary between the Néel and
paramagnetic phase (see Fig. 1). Aside from the thermal
de Broglie wavelength of the spin waves c�AFM, the initial
values g and t define a second characteristic length scale,
the correlation length ��2� in the 2D QNLSM, in view of
1� �> 0. We distinguish two cases. In the renormalized
classical regime c�AFM=��2� � 1. In the quantum critical
regime c�AFM=�

�2� � 1. Finally, we denote by �cross the
RG length scale at which ~�� 1 and beyond which the RG
flows Eqs. (11) and (13) should be replaced by the flows of
the isotropic 3D QNLSM; naive scaling gives �cross � a0,
but the RG flows above will change this scaling. Any two
of these characteristic length scales, c�AFM; �

�2�, and �cross,
fix the third one since the RG flows are constrained to the
boundary between the Néel and paramagnetic phases by
assumption. Without loss of generality, we consider the
case �> 1=�c�AFM�. As we lower the upper momentum
cutoff, the RG scale ~��1 will eventually become larger
than c�AFM. We consider RG scales ~��1 � c�AFM, for
which the quantum fluctuations are important.

We are after the quantity J0��2�s when J0 � J. By di-
mensional analysis and for RG length scale ~��1 * ��2�

��2�s � ����2��2 ~Z2
h�AFM. We claim that J0��2�s � 1 up to

nonuniversal corrections of order J0=J and �J�AFM�
�1 as

a consequence of the facts that ~Z2
h can be estimated from

the approximate ‘‘Ward identity’’ ~Z2
h �

~Z0 and J0 can be
estimated from the condition ~�� 1. The proof begins with
the flow ~�� ��=~��2� as long as ~��1 & c�AFM. Beyond
the RG length scale ~��1 � c�AFM, we can replace the 2D
QNLSM in each plane by a classical 2D NLSM with the
effective coupling ~gcl, where ~gcl � ~g at the upper momen-
tum cutoff 1=�c�AFM�. If so, the effective anisotropy con-
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tinues to decrease as ~� � ��=~��2 ~gcl
~Z0J0�AFM continues

to grow until it reaches the isotropic RG scale ~�� 1 at
which ~gcl � 1. Solving for J0 in terms of the renormalized
parameters when ~�� 1, we arrive at Eq. (1) in the renor-
malized classical regime.

Note that each of these relations, such as ~�� 1 and
~gcl � 1, is defined up to a multiplicative constant that
depends on the details of how we define the RG.
However, the dimensionless combination in Eq. (1) is
universal. The reason for the universality is that all the
microscopic details of the Heisenberg model are encoded
into the three independent quantities ~g, ~Z0, and ~Zh on any
length scale much larger than a. Let us perform the RG
flow to some scale such that ~� is much less than unity.
Then, the identity (6) relates ~Z0 to ~Zh, leaving only two
quantities independent in the classical regime, say ~gcl and
~�. The requirement of criticality relates ~gcl to ~�, leaving
only one independent quantity, say ~�. Choosing the renor-
malization scale to be some given fraction of the correla-
tion length in the two-dimensional model fixes the last
quantity, and thus there are no independent parameters left.

Near a quantum critical point and as is the case for the
renormalized classical regime, the length scale at which
~�� 1 is of the order ��2�. Now, however, there is no
significant separation of scales between c�AFM and ��2�

anymore, i.e., ~�� 1 already at c�AFM. Correspondingly,
there will be universal corrections to (6) in the form
~Z0=Z0 � ��1; g�1��~Z2

h=Z
2
h where the function � of � and

g is universal with ��0; g� � 1. The deviations in the
quantum critical regime from the limiting value of J0��2�s
in the classical renormalized regime define the universal
scaling function F1 of c�AFM=��2�.

Similarly, the correlation at the ��;�; 0� point is of order
~��1 in the plane while it is of order a single interlayer
spacing between the planes. Thus, ��3��;�;0 � �

�2�
s and

��3��;�;0 � �
�2�, and so Eq. (3) follows.

We close by noting that all arguments presented here for
a nonlinear sigma model with O�N� symmetry extend to
nonlinear sigma models defined on Riemannian manifolds
with a positive curvature tensor. For example, we expect
similar universal scaling relations for a stacking of AFM
Heisenberg models on a triangular lattice.

Discussion.—There is a large amount of published data
on quasi-two-dimensional antiferromagnets such as the
spin-1=2 compounds La2CuO4 [14,15], Sr2CuO2Cl2 [16],
and copper formate tetradeuterate (CFTD) [17], as well as
other higher-spin compounds. In this body of work, the
dependence on temperature of a number S�a:u:�0� measured in
arbitrary units is believed to give a good approximation to
the instantaneous structure factor S��;�; 0; t � 0;�� [18]
in a regime of temperatures above 1=�AFM for which spin
fluctuations are predominantly isotropic in spin space. In
this context, we note that the product J0�AFMS��;�; 0; t �
0;�AFM� should also obey a scaling law of the form (3) for
02721
some scaling function F3 that depends on the universality
class of the transition at the ordering wave vector; we note
that in all cases, the universality class at �AFM is Ising or
XY rather than Heisenberg. For all these compounds, J0=J
is very small, less than 10�4. Above the critical tempera-
ture, this number J0�S0� decreases. After converting the

arbitrary units of the measured S�a:u:�0� by multiplication of

the number S�m:c:�0�� =S
�a:u:�
0�� , where 1=�� is the measured

temperature at which the correlation length in units of
the lattice spacing is 3 and S�m:c:�0�� is borrowed from the
Monte Carlo simulation by Kim and Troyer in Ref. [19],
we find that J0�S0� takes the values 1.17, 0.001, and 0.077,
at the temperatures T � 337, 278, and 18 K that are 12,
21.5, and 1.5 K above the corresponding ordering tempera-
tures of La2CuO4, Sr2CuO2Cl2, and CFTD, respectively.
These are the lowest temperatures for which we have data
within the Heisenberg universality class. This result is
largely in accord with our predictions: in La2CuO4,
the extrapolated data show only a small increase in
S0� from T � 337 K to T � 325 K, and hence
J0�AFMS��;�; 0; t � 0;�AFM� will indeed be of order
unity, while in the other compounds S0� shows a very rapid
increase approaching the ordering temperature. Thus, a
measurement of S��;�; 0; t � 0;�AFM� at the ordering
temperature in absolute units would be very desirable.

We thank M. Troyer for explaining [10] and H. M.
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by DOE Grant No. W-7405-ENG-36.
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