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Steplike Magnetization in a Spin-Chain System: Ca3Co2O6
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Because of a ferromagnetic in-chain coupling between Co3� ions at trigonal sites, Co2O6 chains are
considered as large rigid spin moments. The antiferromagnetic Ising model on the triangular lattice is
applied to describe an interchain ordering. An evolution of metastable states in a sweeping magnetic field
is investigated by the single-flip technique. At the first approximation two steps in the magnetization curve
and a plateau at 1=3 of the saturation magnetization are found. Four steps in magnetization are determined
in high-order approximations in agreement with experimental results.
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Among other spin-chain compounds, Ca3Co2O6 has
recently drawn considerable attention to their unique mag-
netic behavior [1–5]. The most intriguing feature observed
in Ca3Co2O6 is a steplike shape of the magnetization curve
[2,3,5]. The number of the steps in the curve depends
strongly on a sweep rate of the external magnetic field
and temperature [2,3,5]. Two steps become apparent in the
temperature range from 12 to 24 K [5]. The first step takes
place at zero magnetic field. Then the magnetic moment
remains constant at about 1=3 of the full magnetization up
to the magnetic field of 3.6 T where the second step oc-
curs to the fully magnetized FM state. At least four steps
that are equidistant on the magnetic field are clearly visible
below 10 K at a very low sweep rate. They are accom-
panied by a sizeable hysteresis. Similar phenomena were
observed in other spin-chain compounds, e.g., Ca3CoRhO6

[6,7].
The structure of Ca3Co2O6 consists of Co2O6 chains

running along the c axis. The Ca ions are situated between
them. The chains are made up of alternating, face-sharing
CoO6 trigonal prisms and CoO6 octahedra. The crystalline
electric field splits the energy level of Co3� ions into the
high-spin (S � 2) and low-spin (S � 0) states. The Co3�

ions situated in the trigonal environment (CoI) are in the
high-spin state and the octahedral Co sites (CoII) occurs in
the low-spin state. In the last case the energy difference
between the low-spin and high-spin states is very small and
a tiny fraction of CoII sites is reported to be in the high-spin
state. The crystalline electric field leads also to a very
strong Ising-like anisotropy at the CoI sites. The chains
form triangular lattice in the ab plane that is perpendicular
to the chains. An in-chain exchange interaction between
magnetic CoI ions through the octahedra with nonmagnetic
CoII ions is ferromagnetic (FM). It causes the in-chain FM
ordering of CoI ions at about 40 K. The interchain inter-
action is antiferromagnetic (AFM) and much weaker than
the in-chain one. A partial AFM order of chains appears at
24 K. A weak feature concerned most probably with a
transition in a new interchain order was also observed at
around 12 K. This scenario of magnetic interactions in
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Ca3Co2O6 is consistent with results of x-ray photoemission
spectroscopy [8], neutron scattering [9], magnetization and
specific heat measurements [1–5,10], nuclear magnetic
resonance [11], and theoretical calculations of indirect
interactions between CoI sites [12].

The model presented in Ref. [2] deals with an in-chain
structure of Ca3Co2O6 and magnetization dynamics ex-
plained in terms of the quantum tunneling. In this Letter,
we develop a new model for a description of the steplike
magnetization in Ca3Co2O6 at low temperatures, shifting
the stress on the interchain magnetic order. The strong FM
in-chain coupling makes it possible to consider a Ca2O6

chain as a large rigid spin formed by CoI ions. There are
only two projections of the chain spin onto the c axis due to
the strong Ising-like anisotropy. Including the AFM cou-
pling between the nearest-neighbor chain spins we arrive to
the Ising Hamiltonian on the triangular lattice

H � J
X
hiji

�zi�
z
j � B

X
i

�zi ; (1)

where �zi � �1 is the c-axis projection of the ith chain
spin, J > 0 is the parameter of the AFM interchain cou-
pling, B is the magnetic field, and hiji denotes the summa-
tion over all the nearest-neighbor pairs on the triangular
lattice.

The strong dependence of the magnetization curve shape
on the magnetic field sweep rate and temperature shows
that the state of the system of the chain spins in the
magnetic field is far from equilibrium. At the low sweep
rate the system is rather in a metastable state than in the
ground state. It is convenient to formulate necessary con-
ditions of the metastability of the system in the following
form:

�zihi � 0; (2)

where

hi � J
X
j�i�

�zj � B
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FIG. 1. The honeycomb magnetic structure. The black and
white circles are spin-up and spin-down states, respectively;
the gray circles can be either spin-up or spin-down states.
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is the effective field for the ith chain and j�i� denotes
summation over the nearest neighbors of the ith chain.
We have used the unstrict inequality in Eq. (2) keeping
in mind a strong degeneracy of partially ordered AFM
arrangements on the triangular lattice. A transition from
one metastable state to another occurs through exited
states. We obtain �zihi > 0 at least for one chain in a exited
state by definition. Let �Ei � 2�zihi > 0 be the excitation
energy per CoI site of the ith chain. It follows from this that
the probability of an exited chain at low temperature T is
extremely small / exp��N�Ei=T� since the number of
CoI sites in the chain (N) is considered to be large. That is
why we should investigate an evolution of metastable
states in the slowly sweeping external magnetic field as-
suming T � 0 quench.

We perform the investigation of the evolution of the
system using the single-flip technique that was applied
earlier to nonequilibrium dynamics of the AFM Ising
model on the triangular lattice [13]. In the terms of the
effective field, the spin-flip probability A is taken in the
following form:

A �
�

0 if �zihi < 0;
1 if �zihi � 0:

(3)

In contrast to Ref. [13] where the spin-flip technique was
applied to numerical Monte Carlo simulations, we inves-
tigate the evolution analytically. If a state under considera-
tion is degenerate and different sequences of spin flips lead
to different final states, one should take into account each
possible sequence with equal probabilities. This assump-
tion can be proven rigorously by Bogolubov’s quasiaver-
age technique. That is, a small auxiliary random field
should be added to the Hamiltonian (1) in order to lift
the degeneracy. After that we take an average over a
manifold of the auxiliary fields restoring equivalence of
different chains and, then, let the amplitude of the auxiliary
fields goes to zero. This approach is equivalent to the
Monte Carlo technique in the limit of the large number
of samples.

We take the ground state of the triangular lattice as an
initial state of the chain lattice at B � 0. The ground state
of triangular lattice at B � 0 is strongly degenerate and it is
impossible to represent it in an explicit form [14]. On the
other hand, we can produce a set of approximations for the
ground state. Since the entropy density for the ground state
was calculated exactly by Wannier [14] as

S �
2

�

Z �
3

0
ln�2 cos!�d! 	 0:3231; (4)

we are able to compare the entropy density of the approxi-
mated state to the exact value in order to control the
precision of our approximation. Previously, Maignan
et al. [5] performed a qualitative analysis of the magneti-
zation curve starting with an initial state that consisted of
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alternating rows of spin-up and spin-down chains. The
energy of such an arrangement equals the ground state
energy but its statistical weight goes to zero in the limit
of the infinite lattice. Therefore, arrangements of this type
should be discarded [14].

The first approximation to the ground state of the AFM
Ising model on the triangular lattice is the honeycomb
structure shown in Fig. 1. Two thirds of the total number
of the chain spins are ordered in the AFM honeycomb
structure, whereas other chain spins placed in the centers
of hexagons have arbitrary projections of chain spins onto
the c axis. The entropy density of the first approximation
equals S1 � �1=3� ln2 	 0:231. An arbitrary small exter-
nal magnetic field lifts degeneracy of chain spins in the
centers of hexagons orienting them along the magnetic
field (�zi � 1). We consider that the spin-up chains (the
black circles) are directed parallel to the magnetic field.
The gray circles become black in Fig. 1. This causes a step
at B � 0 with the height of 1=3 where the full magnetiza-
tion is taken as unity. Then, one third of the spin chains
remain spin-down or antiparallel to the field. Since they are
surrounded by 6 spin-up chains this configuration is stable
up to the critical magnetic field BC � 6J where a transition
to the fully-polarized FM state takes place. The magneti-
zation curve for the first approximation is shown in Fig. 2.
It should be noticed that this curve is in an excellent
agreement with the experimental data at the intermediate
temperatures [1–3,5].

We can improve the approximation used above includ-
ing tripod configurations [14]. Since the chains placed in
the centers of hexagons have arbitrary projections of the
spin onto the c axis, it occurs that three of them neighbor-
ing with the same chain of the honeycomb sublattice are in
the same state. Then the configuration shown in Fig. 3 can
appear. The chain spin in the center of the tripod belongs to
the honeycomb sublattice but, nevertheless, it can have an
arbitrary c projection of the chain spin. These states in-
crease the entropy density up to S � �5=12� ln2 	 0:289
[14] and involve various types of configurations: isolated
tripods and connected tripods. It is convenient to consider
them separately. After straightforward calculations we ob-
tain the probability of an isolated tripod
2-2
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FIG. 2. The magnetic moment as a function of the dimension-
less magnetic field B=J. The dash, dash-dot, and solid lines are
the results of the first, second, and fourth approximations,
correspondingly. The four nearest-neighbor configurations pro-
ducing the critical spin-flip fields are shown. Note the break in
the vertical axis.
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P2 � �1=12��1� 1=23 � 1=24 � 1=25�3 	 0:0397: (5)

We include this type of configuration in the second ap-
proximation for the initial state. The entropy density of the
second approximation is S2 	 0:259. Applying the exter-
nal magnetic field we again obtain a step at the zero
magnetic field but the chain spins in the centers of hex-
agons sharing joint corners with the tripod center remain in
the spin-down state because they are surrounded by 4 spin-
up and 2 spin-down nearest neighbors. The height of the
step [�M�B=J�] can be expressed through probability of
the isolated-tripod configuration as �M�0� � �1=3� �
FIG. 3. An arrangement containing the tripod configuration.
The tripod is shown in the solid line. The three white circles
close to the center of the tripod have 4 spin-up (the black circles)
and 2 spin-down (the white circles) nearest neighbors.
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2P2. The spin chains in the centers of the tripod hexagons
flip at the new critical magnetic field BC � 2J. While the
magnetic fields increases further, the curve occurs at the
1=3 plateau and coincides with the curve obtained in the
first approximation (see Fig. 2).

The third approximation is to include configurations
with isolated pairs of connected tripods. These configura-
tions change the heights of the steps but give no new
features in the magnetization curve. The probability of
the pair of isolated tripod is P3 	 0:010. The entropy
density increases up to S3 	 0:273.

An isolated configuration of three tripods connected as a
star is taken into account in the framework of the fourth
approximation (see Fig. 4). The probability of this con-
figuration is P4 	 0:0035 and the entropy density in the
fourth approximation is S4 	 0:280. The key feature of this
configuration is that there are chain spins that are sur-
rounded by 5 spin-up and one spin-down nearest neigh-
bors. These chain spins remain stable up to the new critical
magnetic field BC � 4J. To calculate the step in the mag-
netization curve we have to calculate a number of various
sequences of spin flips. The final value of the step is
�M�4� 	 0:008, which is significantly smaller than
�M�2� 	 0:12.

There is a variety of more complex configurations than
the tripod. However, it should be mentioned that further
approximations should change the heights of the steps but
they cannot cause new features in the magnetization curve.
As it follows from Eq. (2) there exist only four critical
magnetic fields related to the four configurations of the
nearest neighbors shown in Fig. 2.

The magnetization curve obtained in the fourth approxi-
mation reproduces the key features of the experimental
data at the very low sweep rate, namely, the four equidis-
tant steps in the magnetization curve. In contrast with our
results, the third step in the experimental curve is much
larger than the second one. This quantitative discrepancy
can be eliminated in higher order approximations that can
be investigated both analytically, by the technique used in
this Letter, or numerically, applying Monte Carlo simula-
FIG. 4. Three tripods connected in the star arrangement. Three
white circles close to the center of the star are surrounded by 5
spin-up and 1 spin-down nearest neighbors.
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tion [13]. Approximations of higher orders are of impor-
tance for quantitative calculations of the magnetization
curve because the calculation convergence for the mag-
netic moment is slower than that for the configuration
probability.

Few questions on the magnetization of Ca3Co2O6 are
still unclear. There were observed weak smeared features
in the experimental curve at high magnetic fields above the
last step. They can stem from the small fraction of CoII
sites that are the high-spin state, because they increase the
chain spin and cause higher critical fields. The sizeable
hysteresis also draws attention in the experimental curve. It
depends drastically on the temperature and the magnetic
field sweep rate. It should be mentioned that while the
magnetic field sweeps down and crosses the highest critical
field BC � 6J the chain spins flip down at random and the
system occurs in a new state that is different from that at
the sweeping-up process.

The model developed above can be easily generalized to
the magnetization dynamics. The spin-flip process of an
Ising chain consists of a consequence of transitions over
exited states. That is why the probability of the spin flip per
a unit of time is proportional to the factor of exp�� �

T�

where � is the activation energy. Thus, one can numeri-
cally investigate the dependence of the magnetization
curve on the temperature and the magnetic field sweep
rate applying the spin-flip technique [13].

In conclusion, we have developed a new model for the
steplike magnetization of Ca3Co2O6 spin-chain com-
pound. It can be applied also to other spin-chain com-
pounds with the triangular lattice of chains, e.g.,
Ca3CoRhO6. Because of the in-chain FM coupling be-
tween Co3� ions at trigonal sites, Co2O6 chains are con-
sidered at low temperatures as large rigid spins with the
strong Ising-like anisotropy. The AFM Ising model on the
triangular lattice is applied to the system of rigid FM-
ordered chains. The crucial point of the model is the
supposition that the system is out of equilibrium, because
the dependence of the magnetic moment on the magnetic
field in the ground state of the AFM Ising model on the
triangular lattice is smooth with the exception of the step at
the zero magnetic field [15]. For the honeycomb AFM
structure two steps were found in the theoretical magneti-
zation curve in excellent agreement with experimental data
at the intermediate temperatures. At higher approximations
four equidistant steps were determined in accordance with
experimental curves at the low temperatures and very low
magnetic field sweep rate. The results obtained in this
02721
Letter and the model of Ref. [2] can be regarded as two
limiting cases. The first deals with the nonequilibrium
interchain ordering assuming the chain spins to be rigid.
An in-chain fragmentation and the quantum tunneling of
the magnetic moment of the fragments are investigated in
the second case, totally neglecting the interchain ordering.
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