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Dissipative Dynamics of Planar d-Wave Josephson Junctions
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We study quantum dynamics of and phase transitions in a Josephson junction between two planar
d-wave superconductors where the processes of both quasiparticle and Cooper pair tunneling give rise to
nonlocal dissipative terms in the effective action. By combining a perturbative weak coupling analysis in
the charge representation with a variational approach in the phase representation at strong coupling, we
ascertain a layout of the junction’s phase diagram and discuss the corresponding behaviors.
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Quantum dynamics of ultrasmall normal and supercon-
ducting (Josephson) junctions has long been a topic of
extensive theoretical and experimental studies [1].
However, the bulk of the known theoretical results pertains
to the junctions between conventional, fully gapped,
s-wave superconductors.

The recent interest in the properties of the d-wave
Josephson junctions has been motivated by the continuing
studies of superconducting cuprates and other unconven-
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tional, gapless, superconductors [2,3] and also by the re-
cent proposals of utilizing d-wave junction-based devices
in quantum computing [4].

The microscopic theory of tunnel junctions is based on
the imaginary-time effective action formulated in terms of
the phase difference across the junction ���� � �R��� �
�L���, which is conjugate to the accumulated charge Q���
[1]. To second order in the tunneling amplitude, this action
takes the form
S �
1

4Ec

Z 1=T

0

�
@�
@�

�
2
d��

Z 1=T

0

Z 1=T

0

�
���� �0� cos

���� ����0�
2

� ���� �0� cos
���� ����0�

2

�
d�d�0; (1)
where T is the temperature, and the first (local) term
accounts for the charging energy (measured in units of
Ec � e2=2C) of a junction with capacitance C.

The (potentially) nonlocal � and � terms represent the
processes of quasiparticle and Cooper pair tunneling,
respectively. To second order in the tunneling matrix ele-
ment tk;k0 , the corresponding integral kernels ���� �
�
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Green functions on the left/right bank of the junction [1].

The standard assumption of a generic, momentum-
nonconserving, tunneling (tk;k0 � const) between two fully
gapped s-wave superconductors yields an exponentially
decaying Copper kernel [�s��� / exp��2�s�� for ��
1=�s]. Thus, both constituents of a Cooper pair tunnel
almost simultaneously, and the � term in Eq. (1) reduces
to the integral �EJ

R1=T
0 cos����d� of the local Josephson

energy EJ �
R1=T

0 ����d�.
By contrast, in the case of a junction between two

gapless d-wave (or any l � 0-wave, for that matter) super-
conductors, the assumption of a momentum-independent
tunneling results in the kernel ����, which, being propor-
tional to the product of two independent angular averagesP
kFL;R��; k�, vanishes identically. However, in the pres-

ence of a momentum-conserving [jtk;k0 j2 / ��k� k0�]
node-to-node tunneling across the junction between two
three-dimensional d-wave superconductors, both kernels
in Eq. (1) demonstrate an algebraic decay �d;3D � �d;3D /
1=�3, thereby resulting in the super-Ohmic quasiparticle
dissipative term in Eq. (1) [2,3]. Moreover, at those relative
orientations between the d-wave order parameters that
allow for the nodal quasiparticles’ tunneling directly into
the surface-bound zero-energy states (e.g., node-to-
antinode), the slower-decaying and, therefore, even more
relevant Ohmic quasiparticle tunneling term might appear
as well [3,4].

Furthermore, in the case of tunneling between a pair of
two-dimensional (planar) d-wave superconductors, both
kernels show the Ohmic decay even in the absence of
any zero-energy states [5]

�d;2D � �=�2; �d;2D � �=�2: (2)

In the presence of elastic scattering, the power-law behav-
ior of both ���� and ���� changes to the exponential decay
at time scales in excess of the inverse bulk impurity scat-
tering rate �, thus effectively restoring the local Josephson
energy (see the Erratum in Ref. [5]). However, as sug-
gested by the wealth of transport data, � turns out to be
quite low compared to the maximum gap �d, and, there-
fore, the action (1) governing the dynamics of���� appears
to be essentially nonlocal in the entire interval
max	1=�d; 1=Ec
< �<min	1=T; 1=�
.

In spite of the apparently nonlocal nature of the micro-
scopically derived kernel ����, in the previous analyses of
the d-wave junctions, the Cooper pair tunneling term
would be routinely replaced with the conventional (local)
4-1 © 2006 The American Physical Society
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Josephson energy [3,4]. Although such a phenomenologi-
cal approach might indeed prove justifiable in the three-
dimensional high-Tc junctions (as the analysis of the bulk
of experimental data seems to suggest [6]), it would ob-
viously fail in the case of tunneling between truly two-
dimensional d-wave superconductors [see Eq. (2)].

The resulting anisotropic XY model described by the
effective action (1) and (2) resides outside the realm dis-
cussed in the literature up to date, and its quantum dynam-
02700
ics has not yet been properly studied (we comment on the
earlier work of Ref. [5] in the conclusions). To fill in the
gap, in the present Letter we investigate this model by
applying a combination of techniques that cover the com-
plementary regimes of weak and strong dissipative
couplings.

At weak couplings (�;�� 1), one can proceed with a
direct perturbative expansion for the grand partition func-
tion in the charge representation
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FIG. 1. The renormalization group flow in the anisotropic XY
model (arrows). The phase boundary between the insulating and
(super)conducting phases is shown for Ohmic (dashed line) and
sub-Ohmic (dotted line) dissipations.
where the lower limit in all the integrals is set at �c �
1=Ec, and the instantaneous value of the total charge of the
junction q����Q�ne�e
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 includes a continuously

varying contribution Q � CV induced by an applied ex-
ternal bias V. The sum in (3) is taken over all the tra-
jectories in the charge space [Q� ne! Q�
�n� 1�e! . . .! Q� ne] which consist of N pairs of
quasiparticle (Q! Q� e followed by Q0 ! Q0  e) and
M pairs of Cooper pair (Q! Q� e followed by Q0 !
Q0 � e) tunneling events.

The periodic dependence of the partition function (3)
(hence, any physical observable) upon the external charge
Q with the period e allows one to restrict its values to the
‘‘Brillouin zone’’ (BZ) �e=2 � Q � e=2 in the charge
space [1]. Unlike in the case of the local Josephson energy,
there is no room for the ‘‘minimum charge 2e’’—period-
icity even in the limit �! 0.

In the absence of tunneling, the ground state becomes
degenerate with the first excited one [Q2=2C �
�Q� e�2=2C] only at the BZ boundaries (Q � �e=2).
Provided that the tunneling is weak, the analysis of the
perturbative expansion (3) can be readily performed in the
vicinity of the degeneracy points where the (renormalized)
gap �r�Q� � E1�Q� � E0�Q� between the ground and first
excited states remains small compared to Ec. Therefore,
close to, e.g., Q � e=2, one can safely neglect any tran-
sitions between the two lowest energy levels and the rest of
the spectrum separated by the energy gap of order Ec,
thereby reducing the sum (3) to the trajectories comprised
of a sequence of ‘‘blips’’ between the states with the
charges Q and Q� e [7].

The resulting two-state problem then becomes amenable
to the renormalization group (RG) analysis, akin to that
carried out in the context of the Kondo and other quantum
spin-1=2 problems. By performing the standard procedure
of changing the cutoff in the time integrations in Eq. (3)
from �c to �0c > �c and integrating over the pairs of oppo-
site blips with separations �c < j��i � �

�
j j< �0c, one re-

produces the renormalized partition function Zr�Q�, which
now depends on the effective dissipative couplings �r, �r,
and ~�r � �r�c. The latter obey the RG equations

d�r
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derived under the assumption of small �r and �r.
Solving the RG equation (4) and evaluating all the

functions at the lowered energy cutoff 1=�0c � �r, one
obtains renormalized values of the effective couplings

�r �
��r
�
�

�
1� 2	 lnEc=�r

; (5)

where 	 � �� �, and a self-consistent equation for the
renormalized gap

�r �
�0

	1� 2	 lnEc=�r

�=	

; (6)

whose bare value is ��Q� � E�0�1 �Q� � E
�0�
0 �Q� � Ec�1�

2Q=e�.
According to Eq. (5), for 	> 0 the RG trajectory flows

towards weak coupling (see Fig. 1) where the invariant
charge ~�r increases, although the actual gap �r given by
Eq. (6) continues to decrease. In this regime, the quantum
4-2
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phase fluctuations due to the Coulomb blockade destroy
the classical Josephson effect, and the junction remains in
the insulating state. This conclusion generalizes that drawn
in the extensively studied � � 0 limit where the system
possesses the exact XY symmetry and is known to retain its
insulating behavior in the entire range of parameters, in-
cluding arbitrary values of the external charge Q [7].

Nonetheless, the effect of dissipation can still be impor-
tant, as demonstrated by, e.g., a rounding of the Coulomb
staircaselike dependence of the average charge hq���i on
Q. Close to the BZ boundary (�Q � Q� e=2! 0�), one
can use Eq. (6) to obtain hq���i � Q� CdE0�Q�=dQ �
�e=2��1� sgn�Q=	1� 2	 ln�e=�Q�
�=	�. Thus, the
dissipation-induced screening of the external charge ap-
pears to be enhanced as compared to the case of a normal
junction (single-electron box) with � � 0 [7].

Alongside the reduction of the rate of tunneling from the
first excited to the ground state, this effect is manifested by
the current-voltage (I-V) characteristics of a voltage-
biased junction where the induced dc current I�V� �
hq���iImE1�Q�jQ�VC � 2
��V � Ec=e�=	1�
2	 ln�Ec=eV � Ec�
1�2��=	� vanishes below a threshold
Vc � Ec=e. At finite temperatures, the hard Coulomb gap
gets partially filled with thermally excited quasiparticle
excitations, thus giving rise to a temperature-dependent
conductance. By the same token, in a current-biased junc-
tion the zero-temperature I-V characteristics should be-
come nonlinear for I < eEc.

Upon approaching the separatrix 	 � 0, the RG flow
slows down and eventually ceases completely. Along that
line, the effective coupling �r � �r undergoes no renor-
malization (at least, to first order in the dissipative cou-
plings), while the effective gap demonstrates a power-law
dependence �r � �0��0=Ec�2�=1�2� on its bare value,
thus indicating the possibility of a dissipative phase tran-
sition at � � � � 1=2.

Considering that for 	 � 0 the symmetry of the sys-
tem is Ising-like, one might expect this transition to be of
the Kosterlitz-Thouless type [7]. Moreover, in light of
the constancy of the effective coupling � � �, this criti-
cal behavior appears to be reminiscent of that of a junc-
tion with the local Josephson energy and quadratic [that
is, ��

RR
d�d�0�������0�=j�� �0j2, as opposed to the

non-Gaussian quasiparticle tunneling-induced] Ohmic
dissipation.

For � � �< 1=2, the quantum phase fluctuations are
strong, the energy bands E0;1�Q� � E�0�0;1�Q� �r�Q�=2
remain nondegenerate, and the junction operates in the
insulating (Coulomb blockade-dominated) regime. In con-
trast, for � � �> 1=2, the quantum fluctuations are
quenched, and the energy bands become progressively
more and more degenerate in a finite portion of the BZ
which expands from the boundaries (Q � �e=2) inward as
the parameter � � � increases. This behavior signals a
suppression of the Coulomb blockade and a possible res-
toration of the classical Josephson effect where the voltage
02700
drop across the junction vanishes and the current is deter-
mined by a nonzero average value h����i of the phase
difference across the junction.

For 	< 0, one finds a runaway RG flow towards strong
coupling (see Fig. 1) where both �r and �r become of
order unity and ~�r starts to decrease, regardless of the bare
values of the dissipative couplings. Such a behavior sug-
gests that the junction is likely to end up in the (super)-
conducting regime for all �< �.

In the complementary regime of strong coupling (	>
1), a preliminary insight into the problem can be obtained
by virtue of the variational technique where the correlation
function of the small (’’spin wavelike’’) phase fluctuations
is sought out in the form

hj�!j
2i �

1

!2=Ec � gj!j �D
: (7)

Computing the variational free energy F � �T lnZ0 �

ThS� S0i [where the averages such as, e.g., hei����i �
exp�� 1

2 h�
2���i� are calculated with the use of the qua-

dratic action S0���, which yields Eq. (7)] and minimizing
the result with respect to the parameters g andD, we obtain
the equation for the effective dissipative coupling

	 � g�g�1=g�1��2��1=1�g: (8)

Provided that the condition �� �> e��1=2� ���
ln�1=2�� is fulfilled, there is a finite gap due to the XY
anisotropy in the two-dimensional space spanned by the
unit vector n � �cos�=2; sin�=2�

D � Ec�2��
g=g�1g2=1�g; (9)

where g � 	1�2=	�2��1=	 is the solution of Eq. (8) for
	> 0. For comparison, one finds g � 	 throughout nearly
the entire domain 	< 0.

A nonzero anisotropy gap D renders the expectation
value h�2���i finite, so that the phase� becomes localized,
and the real part of the ac conductance G�!� �
I�!�=V�!� � Re�!nhj�!n

j2i��1j!n!�i! develops a co-
herent peak at zero frequency,G�!! 0� � D��!�, which
is indicative of the possible onset of the classical Josephson
effect.

Conversely, in the case that Eq. (8) features no solution,
the gapD vanishes, the expectation value of the phase fluc-
tuations h�2���i diverges, and the phase remains delocal-
ized. Although it may seem that in the dc limit the real part
of the conductance approaches a finite value G�0� � g, the
continuing downward renormalization of the effective dis-
sipative parameter 	 [see Eq. (11) below] is expected to
eventually bring the system into the insulating regime.

In fact, in the absence of a nontrivial mean field solution,
the variational method can be abandoned in favor of the
straightforward perturbative approach that reveals a con-
tinuous renormalization of the couplings due to the pres-
ence of non-Gaussian (quartic and higher order) terms in
the action (1). To first order in the small parameter 1=	,
one arrives at the RG equations
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which demonstrate the before mentioned gradual decrease
of the effective dissipative parameter as a function of the
lowered energy cutoff 1=�0c

	r � 	�
1

2
2 lnEc�0c: (11)

The steady decrease of both �r and �r as well as the
approximate constancy of the ratio �r=�r agree quite
well with the behavior found at weak coupling, and the
RG trajectories interpolate smoothly between the two
regimes.

Altogether, the above results suggest a tentative phase
diagram of Fig. 1 where the insulating behavior sets in
within the domain defined by the inequalities 0 � � �
1=2 and � � � � �� e ln�1=2��. Upon increasing the
value of 	> 0 and/or changing its sign, the insulator gives
way to the conducting phase.

In the disordered phase, the correlation function
hei����=2e�i��0�=2i decays algebraically and the insulator-
like I-V characteristics show the presence of a hard (at T �
0 and I ! 0) Coulomb gap. By contrast, in the ordered
phase, the system develops an order parameter hei����=2i �

0 whose presence indicates that the phase variable is
localized in either even (� � 2
M) or odd [� � �2M�
1�
] vacua. This does not, however, constitute a complete
phase localization, and, therefore, the standard Josephson
could only be observed as a nonequilibrium phenomenon
over finite (albeit potentially quite long) observation times,
while at still longer times the response would eventually
revert to a resistive behavior [1].

Before concluding, we briefly mention another poten-
tially important nonequilibrium effect, such as the exci-
tonic enhancement of the tunneling probability which
modifies the exponent in the power-law decaying kernels
(2) to 2� �, where � is a function of the (nonuniversal)
scattering phase shift [8].

In this sub-Ohmic case, the right-hand side of the RG
equation (10) acquires additional terms (�� and ��), and,
as a result, there is now a fixed point at 	c � 1=2
2�. One
would then be led to conclude that, in the domain defined
by the relations 	c � �� � � e ln�1=2��, the transition
from the insulating to the superconducting phase is pre-
empted by that into a new (conducting, although poten-
tially different from the Josephson-like) state.

Last, if the anisotropic XY model (1) and (2) with the
parameter values from Ref. [5] (� � 2� and Ec ��d)
were to be applied to the analysis of a grainy d-wave
superconductor, an experimental observation of the appar-
ent Josephson-like response would imply that the dissipa-
tive couplings in that sample should indeed be quite strong
(�> �c � 0:85). Considering that the typical junctions
manufactured out of the cuprate superconductors tend to
have relatively high conductances [6], the possibility that
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an average junction between adjacent grains does satisfy
this condition is not unrealistic.

Before concluding, it is worth pointing out that the
existence of a critical coupling �c could not be predicted
in the framework of the naive gradient expansion of
Ref. [5]. For one, a direct application of this technique to
the model (1) and (2) gives rise to an undamped correlation
function hj�!j

2i � �!2=E�c �D���1 with a strongly
temperature-dependent renormalized Coulomb energy
E�c � T and a gap D� � Ec [5], in stark contrast with
Eq. (7).

In summary, we carried out a microscopic analysis of the
anisotropic XY model describing a node-to-node
Josephson junction between two planar d-wave supercon-
ductors. We found the evidence of a dissipative phase
transition and identified a tentative location of the phase
boundary in the �-� plane. The corresponding critical
behavior differs, in a number of important details, from
the previously studied cases of a superconducting junction
with the local Josephson energy as well as that of a normal
junction (single-electron box). Our specific predictions for
such observables as energy spectrum, average excess
charge, and I-V characteristics could be tested in
Josephson junctions formed by very thin (of a width less
than the correlation length) cuprate films.
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