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Chaotic Dynamics of Superconductor Vortices in the Plastic Phase
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We present numerical simulation results of driven vortex lattices in the presence of random disorder at
zero temperature. We show that the plastic dynamics is readily understood in the framework of chaos
theory. Intermittency ‘‘routes to chaos’’ have been clearly identified, and positive Lyapunov exponents and
broadband noise, both characteristic of chaos, are found to coincide with the differential resistance peak.
Furthermore, the fractal dimension of the strange attractor reveals that the chaotic dynamics of vortices is
low dimensional.
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When flowing over a random medium, vortices in type II
superconductors display a great variety of dynamical re-
gimes, from the depinning threshold up to the high driv-
ing phase. Most of the V � I experiments [1,2] and nu-
merical simulations [3–7] reveal an intricate interplay
between the ‘‘peak effect’’ (PE), i.e., the increase of the
depinning threshold current below the upper critical field
Hc2, the peak of the differential resistance dV=dI, volt-
age noise, and the plastic flow of vortices. Below the PE,
an ordered phase is expected, and the unusual excess noise
measurements are understood within an edge contami-
nation process where a metastable disordered vortex phase
generated at the edges is annealed into an ordered phase
in the bulk [8]. On the contrary, in the PE region a disor-
dered phase is expected, and plasticity effects such as
tearing are expected at the depinning threshold. These
features have recently been studied in the mean field
approach [9]. However, many open questions about the
complex plastic flow and, in particular, its dynamical prop-
erties remain.

In this Letter, we propose to examine the plastic phase
through the chaos theory of deterministic dissipative dy-
namical systems. Charge density waves and Josephson
junction arrays have already been analyzed through chaos
theory [10], but such study is completely new for vortex
lattices. We performed numerical simulations that clearly
demonstrate the chaotic behavior of vortices in the plastic
phase. While increasing the driving force, instabilities are
developed by the nonlinearities of the system and periodic
regimes are destabilized, giving rise to chaotic regimes.
Such destabilizations have been clearly identified in our
system to be the intermittency ‘‘route to chaos.’’ Further-
more, the broadband voltage noise, the positive Lyapunov
exponents, and the fractal dimension of the strange attrac-
tor are used to characterize the chaotic phase, which is
shown to coincide with the peak of dV=dI. A crucial result
of our study shows that the chaotic dynamics in the plastic
phase is low dimensional. Therefore, within the framework
of chaotic dynamical systems, our results open new per-
spectives in the understanding of vortex dynamics that are
discussed in the conclusion.
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We consider Nv Abrikosov vortices driven over a ran-
dom pinning background in the �x; y� plane. At T � 0, the
overdamped equation of motion of a vortex i in position ri
reads

�
dri
dt
� �

X

j�i

riU
vv�rij� �

X

p

riU
vp�rip� � FL; (1)

where rij is the distance between vortices i and j, rip is the
distance between the vortex i and the pinning site located at
rp, and ri is the 2D gradient operator acting in the �x; y�
plane. The viscosity coefficient is �, and FL � FLx̂ is the
Lorentz driving force due to an applied current. The
vortex-vortex pairwise repulsive interaction is given by a
modified Bessel function Uvv�rij� � 2�0AvK0�rij=�L�,
and the attractive pinning potential is given by Uvp�rip� �
��pe��rip=Rp�

2
. In these expressions, Av and�p are tunable

parameters, �L is the magnetic penetration depth, and �0 �
��0=4��L�

2 is an energy per unit length. We consider
periodic boundary conditions of �Lx; Ly� sizes in the
�x; y� plane. All details about our method for computing
the Bessel potential with periodic conditions can be found
in Ref. [11]. Molecular dynamics simulation is used for
Nv � 30 vortices in a rectangular basic cell �Lx; Ly� �
�5; 6

���
3
p
=2��L. The number of pinning centers is set to

Np � 30. We consider the London limit � � �L=� � 90,
where � is the superconducting coherence length [12]. The
average vortex distance a0 is set to a0 � �L, and Rp �
0:22�L, � � 1, Av � 2:83� 10�3�L. We present results
for two different pinning strengths corresponding to a
maximum pinning force of Fvpmax � 0:2F0 and Fvpmax �
1:4F0, where F0 � 2�0Av=�L is a force defined by the
Bessel interaction. In the weak pinning case, the driving
force applied along a principal vortex lattice direction x is
varied from 0 up to FL � 3F0 � 100FLc , where FLc is the
critical Lorentz force along x. In the strong pinning case,
the driving force is varied from 0 up to FL � 3F0 � 20FLc .
The choice of the double precision Runge-Kutta algorithm
time iteration step 	t is dictated by the dominant force,
and, for example, in the high driving phase, we take 	t �
10�3t0, where t0 � ��L=FLmax.
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The ‘‘experimental’’ procedure is the following: We
start by randomly throwing in the �x; y� plane Nv vortices
and Np Gaussian pins, and relaxation with zero Lorentz
force yields a vortex structure with dislocations. The
Lorentz force is then slowly increased up to far in the
high driving phase. The successive regimes we observe
in the weak pinning case Fvpmax � 0:2F0 are the following.
Phase I: pinned regime where all vortices have zero veloc-
ity. Phase II: plastic channels flowing through pinned
regions and where the motion is either periodic or quasi-
periodic as seen in Ref. [3]. Phase III: plastic flow with
almost no stationnary vortices as seen in Refs. [3,5,13]. In
the following, this motion shall be shown to be chaotic.
Phase IV: fully elastic flow with no dislocations and where
the motion occurs through rough static channels [14].

We shall now examine in detail the plastic dynamics of
vortices in the framework of classical chaos theory. The
first central point of the Letter shows that the transition
from phase II to phase III is one of the three well-known
routes to chaos. In this very short applied force range, the
typical longitudinal velocity of the vortex center of mass
Vcm
x that we measure in time is shown in Fig. 1(a). It shows

time intervals where the motion is periodic (the same as
used to exist in phase II below the transition). The differ-
ence is now that such a periodic regime becomes unstable
and gives way to a chaotic burst displaying large velocity
fluctuations. Then the system goes back to the periodic
regime, which is still unstable, giving way to another
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FIG. 1. Properties of the transition region from phase II to
phase III in the weak pinning case. It clearly displays the type I
intermittency route to chaos characteristics. (a) Part of the time
evolution of the longitudinal velocity Vcm

x �t� obtained for FL �
1:5221� 10�4. One sees laminar (i.e., periodic) phases inter-
rupted by chaotic bursts of large velocity fluctuations.
(b) Distribution of the laminar phase durations of Vcm

x �t� mea-
sured for FL � 1:5221� 10�4. (c) Evolution of 
max when
varying the applied force FL from the intermittency threshold
force FLt . A clear power law is observed as shown with the line
of slope �1=2.
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chaotic burst, and so on. The chaotic bursts correspond to
apparently disordered trajectories of the moving vortices.
However, from time to time, moving vortices are able to
synchronize temporarily their motion into periodic motion
(laminar phases). In the framework of the dissipative chaos
theory, such intermittent regimes are known to be one
possible way to drive the system from periodicity to chaos.
The intermittency route to chaos has several characteristics
and may be mainly classified in three types (I, II, and III)
depending on the unit circle crossing value of the Floquet
multipliers [15,16]. To determine the type of intermittency
we observe in our system, we first measure for a given
value of the applied force the distribution of the laminar
(i.e., periodic) phase durations. Figure 1(b) shows such a
distribution obtained for Vcm

x �t� displayed in Fig. 1(a). This
distribution of laminar phase durations shows a maximum
at an upper bound 
max and a decrease for low durations
which can be much smaller than 
max. Furthermore, if we
now increase very slowly the applied force in order to
remain in an intermittent regime, the value of 
max de-
creases as shown in Fig. 1(c). A very nice power law

max � �FL � FLt ��1=2 on almost four decades is measured
close to the intermittency threshold FLt , i.e., the force
above which periodic regimes become unstable. The par-
ticular shape of the distribution of the laminar phase dura-
tions and the exponent �1=2 are characteristics of the
type I intermittency route to chaos related to a saddle-
node bifurcation at FLt [15,16]. Note that the type of
intermittency may change for different pinning strengths
(for stronger pinning parameters Fvpmax � 1:4F0, we ob-
served, for example, a type II intermittency route to chaos
characterized, in particular, by a different shape of the
distribution of the laminar phase durations and related to
a subcritical Hopf bifurcation). Further increasing the ap-
plied force will give intermittent regimes with shorter
laminar phase durations until they completely disappear,
therefore giving way only to large chaotic fluctuations.
Then chaos expands in phase III.

In the second central point of our Letter, we examine in
detail the chaotic phase itself. Usual tools of chaos theory
are successfully used to characterize the chaotic dynamics
of vortices, and the link with the commonly observed
differential resistance peak [1,4,6] in vortex dynamics is
established. This section characterizes the chaotic attractor
of the vortices in the plastic phase III of the strong pinning
case Fvpmax � 1:4F0 (where phases I, II, and III are equiva-
lent to those described above for the weak pinning case).
We first compute the Lyapunov exponents. Positive
Lyapunov exponents are a signature of chaotic dynamics,
since they illustrate the ‘‘sensitive dependence on initial
conditions’’ (SDIC) which is a property of chaotic attrac-
tors only. To compute the maximal Lyapunov exponent of
our system, we consider two very close initial conditions
and observe how the distance d�t� in the phase space
between the two corresponding trajectories evolves in
time on the attractor. Since we integrate Nv first order
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differential equations of motion [Eq. (1)], the phase space
is defined by the 2Nv vortex coordinates and the distance
d is defined by d2�t� �

PNv
i�1��Xi�t� � ~Xi�t��2 � �Yi�t� �

~Yi�t��
2	, where Xi�t� � xi�t� � xcm�t�, Yi�t� � yi�t� �

ycm�t�, ~Xi�t� � ~xi�t� � ~xcm�t�, ~Yi�t� � ~yi�t� � ~ycm�t�. In
these expressions, �xi; yi� and �~xi; ~yi� are the vortex i coor-
dinates, and �xcm; ycm� and �~xcm; ~ycm� are the respective
coordinates of the center of mass. The tilde notation
(~x; ~y) refers to the second trajectory generated by the
neighboring initial condition. The inset in Fig. 2 displays
an example of the time evolution of d we typically find in
phase III. It clearly shows an exponential divergence d�
exp��t� of the two trajectories for time scales up to 
chaos �
1:6� 104 � 50t0. The slope, therefore, defines a positive
maximal Lyapunov exponent � characteristic of chaotic
dynamics. Figure 2 displays the evolution of � that we
observe in phase III. The maximal value of �, therefore,
expresses that the fastest divergence of two chaotic trajec-
tories occurs in the midrange of phase III. Finally, note that
for time scales larger than 
chaos we find diffusive and
superdiffusive motions (not shown) in the transverse and
longitudinal directions as already reported in Ref. [6]. For a
given applied force, we now compute the power spectrum
S��f� of Vcm

� �t�, i.e., S��f� � �1=�t2 � t1�	j
Rt2
t1 dtV

cm
� �t� �

exp�i2�ft�j2, where � � x or y, and t2 � t1 
 
chaos. We
define the low frequency noise B� by averaging S��f� over
the low frequency range [17]. Bx and By are in some way a
measure of the degree of chaos in the system, since chaotic
dynamics generates broadband noise at low frequencies
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FIG. 2. Evolution of the maximal Lyapunov exponent � with
the Lorentz force in phase III. Each point is the average of
20 couples of initial conditions, and the error bars are the
standard deviation. The inset displays the time evolution of the
distance d�t� between two initial neighboring trajectories in the
phase space for FL � 0:0029 in the strong pinning case. The
exponential divergence (positive slope �) characteristic of chaos
is obvious for t < 
chaos. For time scales larger than 
chaos,
diffusive motion is observed as already shown in Ref. [6].
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[16]. Concomitantly with the differential resistance
dVcm

x =dFL, we plot in the inset in Fig. 3 the longitudinal
Bx and transverse By low frequency noises. The rapid
increasing of Bx and By confirm the (rapid) setting of chaos
in the vortex lattice, and their maximal value coincides
with the well-known peak of the differential resistance. As
shown in Fig. 2, it also corresponds to the maximal value of
�. Chaos is, therefore, fully developed at the differential
resistance peak.

The positive Lyapunov exponents characterize the ab-
sence of temporal correlation in the chaotic regime due to
SDIC. We shall now characterize the spatial correlations
within the chaotic regime by computing the dimension of
the chaotic attractor. Such an attractor is known to be
fractal with a noninteger dimension in the phase space.
To characterize the fractal nature of this so-called strange
attractor, we evaluate the correlation sum defined by
C��� � limm!11=m2 Pm

k;l�1 H��� �kl�, which measures
the number of couples of points �k; l� on the chaotic
attractor whose distance �kl is less than �. H�z� is the
Heaviside function. For a limited range of �, it is found
that C��� � ��, where the exponent � is called the corre-
lation dimension and is a simple measure of the fractal
dimension of the attractor [18]. As shown in Fig. 3, the
fractal dimension of the vortex strange attractor has the
same shape as the Lyapunov exponent curve (Fig. 2), and
its maximum also coincides with the differential resistance
peak (inset in Fig. 3). It therefore confirms our previous
finding that chaos is fully developed at the peak of the
differential resistance curve. Above the peak, chaos still
exists, but its intensity decreases as shown by the decreas-
ing of �; �; Bx, and By. It corresponds to the onset of
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FIG. 3. Evolution of the strange attractor fractal dimension
(computed with the correlation dimension �) with the Lorentz
force in phase III. The inset displays the differential resistance
curve (solid circles) and the low frequency longitudinal Bx (open
circles) and transverse By (triangles) noises. Dotted lines sepa-
rate phases II, III, and IV.
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transverse order of the smectic phase [19], which we find to
occur precisely at the peak. Furthermore, we find the very
important result that the strange attractor of the driving
vortices has a low (fractal) dimension, 1< �< 2 (Fig. 3),
which shows that the chaotic dynamics of a large number
of vortices shrinks on a low dimensional surface in the
phase space. The crucial consequence of a strange attractor
of dimension less than two is that the chaotic dynamics of
vortices in the plastic phase may be described with only
three dynamical variables. This is an important result for
further theoretical studies, because simple analytical mod-
els with three dynamical variables should be sufficient to
describe the complex plastic phase. Finally, we find that the
end of chaos coincides with the dynamical freezing tran-
sition [6] where the transverse velocity Vcm

y drops to zero.
We therefore clearly showed that the bottom of the differ-
ential resistance peak marks the onset of chaos, while the
end of the peak and the dynamical freezing transition
appear as the end of chaos.

In conclusion, we obtained conclusive results about the
chaotic dynamics of vortices in the plastic phase. The route
to chaos has been identified in detail: Type I (II) intermit-
tency in the weak (strong) pinning case is found. Chaos
characterized by positive Lyapunov exponents and broad-
band noise is found to coincide with the differential resist-
ance peak. Furthermore, the fractal dimension of the
strange attractor shows that the chaotic dynamics of vorti-
ces is low dimensional. Therefore, our results open new
perspectives in the theoretical understanding of the plastic
flow phase, which is much less developed than the fast
moving vortex phases [14,19] and than the plastic depin-
ning transition [9]. In particular, we show the important
result that the chaotic dynamics in the plastic phase may be
understood with only three dynamical variables. Hence,
our results combined with the usual tools of the chaos
theory (e.g., bifurcation theory, embedding dimensions,
Poincaré sections, strange attractors, time series analysis)
should help for further theoretical, numerical, and experi-
mental investigations of the open issues related to the
formation of fractal objects in the complex space phase
of driven plastic vortices. Finally, our results let us foresee
new possibilities of controlling vortex motion for device
applications using the concept of controlling chaos devel-
oped these past years (see, e.g., [20]). The goal of such a
control procedure is to lock the chaotic system into a stable
periodic orbit which either used to be unstable in the
uncontrolled system (feedback scheme by weakly chang-
ing parameters [21]) or is newly created (nonfeedback
scheme by weakly forcing the system; see, e.g., [22]).
We therefore suggest that the concept of controlling chaos
might be used to design device applications to rectify
plastic (chaotic) vortex motion.

We are grateful to the LMPT-CNRS UMR 6083–Tours
(France) for our extensive use of their computers. We ac-
knowledge discussions with T. Giamarchi, P. Le Doussal,
A. Mouchet, H. Giacomini, and Y. Lansac.
02700
[1] M. J. Higgins and S. Bhattacharya, Physica (Amsterdam)
257C, 232 (1996); S. Bhattacharya and M. J. Higgins,
Phys. Rev. Lett. 70, 2617 (1993).

[2] M. W. Rabin et al., Phys. Rev. B 57, R720 (1998); A. M.
Troyanovski, J. Aarts, and P. H. Kes, Nature (London) 399,
665 (1999); Z. L. Xiao, E. Y. Andrei, and M. J. Higgins,
Phys. Rev. Lett. 83, 1664 (1999); A. Maeda et al., Phys.
Rev. B 65, 054506 (2002); S. Okuma and M. Kamada,
ibid. 70, 014509 (2004).

[3] N. Gronbech-Jensen, A. R. Bishop, and D. Dominguez,
Phys. Rev. Lett. 76, 2985 (1996).

[4] M. C. Faleski, M. C. Marchetti, and A. A. Middleton,
Phys. Rev. B 54, 12 427 (1996); S. Ryu et al., Phys.
Rev. Lett. 77, 5114 (1996); C. J. Olson, C. Reichhardt,
and F. Nori, ibid. 81, 3757 (1998).

[5] S. Spencer and H. J. Jensen, Phys. Rev. B 55, 8473
(1997).

[6] A. B. Kolton, D. Dominguez, and N. Gronbech-Jensen,
Phys. Rev. Lett. 83, 3061 (1999).

[7] M. Cha and H. Fertig, Phys. Rev. Lett. 80, 3851 (1998);
83, 2283 (1999); C. Reichhardt, K. Moon, R. Scalettar,
and G. Zimanyi, ibid. 83, 2282 (1999); A. van Otterlo,
ibid. 84, 2493 (2000); M. Chandran, R. T. Scalettar, and
G. T. Zimanyi, Phys. Rev. B 67, 052507 (2003).

[8] Y. Paltiel et al., Nature (London) 403, 398 (2000).
[9] K. Saunders, J. M. Schwarz, M. C. Marchetti, and A. A.

Middleton, Phys. Rev. B 70, 024205 (2004), and refer-
ences therein.

[10] J. Levy, M. S. Sherwin, and J. Theiler, Phys. Rev. B 48,
7857 (1993); V. I. Marconi, A. B. Kolton, D. Dominguez,
and N. Gronbech-Jensen, ibid. 68, 104521 (2003).

[11] E. Olive and E. H. Brandt, Phys. Rev. B 57, 13 861
(1998).

[12] � appears in the inner cutoff, which removes the logarith-
mic divergence of K0�r=�L� at r! 0 (see Ref. [11]).

[13] H. Fangohr, S. J. Cox, and P. A. J. de Groot, Phys. Rev. B
64, 064505 (2001).

[14] T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 76, 3408
(1996); 78, 752 (1997); P. Le Doussal and T. Giamarchi,
Phys. Rev. B 57, 11 356 (1998).

[15] Y. Pommeau and P. Manneville, Commun. Math. Phys. 74,
189 (1980).
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