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Landé g Factors and Orbital Momentum Quenching in Semiconductor Quantum Dots
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We show that electron and hole Landé g factors in self-assembled III-V quantum dots have a rich
structure intermediate between that of paramagnetic atomic impurities and bulk semiconductors. Strain,
dot geometry, and confinement energy modify the effective g factors, yet are insufficient to explain our
results. We find that the dot’s discrete energy spectrum quenches the orbital angular momentum, pushing
the electron g factor towards 2, even when all the materials have negative bulk g factors. The approximate
shape of a dot can be determined from measurements of the g factor asymmetry.
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FIG. 1 (color online). InAs nanocrystal electron g factor as a
function of dot size (parametrized by Eg). The effects of angular-
momentum quenching are clearly seen as g! 2 for smaller
nanocrystals. 10 eV barriers were used to exclude the wave
function from the barriers. The dashed line shows the g factor
obtained from the bulk formula, using Eg for the nanocrystal
(including the confinement energy).
An individual electron or hole spin in a single semicon-
ductor quantum dot provides an excellent system for test-
ing fundamental aspects of quantum dynamics and co-
herence. The central quantity characterizing the response
of an electron or hole spin to an applied magnetic field, the
Landé g factor, has been measured optically [1–4] and
electrically [5–8]. For large dots [7–10], such as those
defined lithographically [7] or by electrical gates [8], the
magnetic fields of interest are usually large enough that the
magnetic length is smaller than the dot diameter. In this
limit the g factors are closely related to those of quantum
wells, and theory [9,11] appears to agree with experiment
[8]. The theoretical situation is much less satisfactory for
small dots—asymmetric structures grown by self-
assembly in the molecular beam epitaxy (MBE) growth
process or spherical nanocrystals grown by chemical syn-
thesis. Although several phenomena known to affect g
factors in quantum wells [12,13] have been explored in
quantum dots [14–20], the electronic states in dots are
discrete, and thus differ qualitatively from semiconductors
with unbounded motion in one or more directions [21].
Semiconductor quantum dots also have fully coherent
orbital electronic states with very long-lived spin coher-
ence [1], so the physics of their g factors is very different
from that of metallic nanoparticles [22–24] (whose g
factors are dominated by effects from incoherent orbital
scattering and spin scattering). The orbital coherence of
semiconductor quantum dot wave functions makes many
dot properties, such as the sharply peaked optical transi-
tions, resemble those of atoms more than bulk semicon-
ductors. If quantum dots are considered as ‘‘artificial
atoms’’ and approached with techniques developed for
magnetic atom dopants in solids [25], then the relevant
quantity is the ratio of the energy splitting between differ-
ent angular-momentum states to the spin-orbit interaction,
and for a strong confining potential the g factor of dots
should approach 2.

Here we show that the g factor of a ground-state electron
or hole in a quantum dot depends significantly on an
atomlike property: the quenching of orbital angular mo-
mentum through quantum confinement. To identify this
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effect we must consider also the known bulklike effects
on the g factors from dot strain and composition. These
include [14–19] the modification of the ground-state en-
ergy in the dot, the relative proportion of dot or barrier
material the wave function occupies, and valence band
mixing (typically of heavy and light states). In bulk semi-
conductors the conduction-band g factor is [26],

g � 2�
2EP�

3Eg�Eg ���
; (1)

where Eg is the band gap, � is the spin-orbit coupling,
EP � 2hSjPjXi2=m is the Kane energy involving S-like
and P-like Bloch functions hSj and hXj, respectively [12],
and m is the free electron mass. For unstrained spherical
InAs nanocrystals with hard wall boundary conditions only
Eg changes, yet Eq. (1) is a very poor predictor of g factors
in these dots (Fig. 1).

The InAs in InAs=GaAs dots formed by self-assembly in
MBE is highly strained in order to accommodate the differ-
ing lattice constants of InAs and the GaAs substrate. The
electron g factor predicted from Eq. (1) for InAs strained in
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FIG. 2 (color online). InAs=GaAs quantum dot g factors for ~B
in the �001� direction as a function of the dot size (parametrized
by Eg) for various dot shapes. Solid lines are for the lowest-
energy electron; dashed lines are for the lowest energy hole.
Experimental values are from Ref. [5].
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FIG. 3 (color online). InAs=GaAs quantum dot g factors along
the �110� and �1�10� directions as a function of dot size (parame-
trized by Eg). Solid lines are for the lowest-energy electron;
dashed lines are for the lowest energy hole.
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this way is negative, as is the known g factor for unstrained
GaAs. Yet the electron g factors for such dots are positive
over almost the entire size range (Fig. 2). Thus the bulklike
approach to g factors in these quantum dots, averaging the
g factors over the dot and barrier material [14,15], also
fails. The competing influence of atomlike and bulklike
effects predict that the growth-direction electron g factor
increases with increasing dot size, whereas considering
only bulklike effects leads to the opposite result. Our
results agree with recent experiments on electron g factors
[5]. We predict hole g factors have large positive values for
magnetic fields in the growth direction, and small negative
values in the in-plane directions (Figs. 2 and 3), and are
sensitive to dot shape. The calculations presented here are
for unstrained InAs spherical nanocrystals and strained
InAs=GaAs MBE-grown quantum dots, but our qualitative
conclusion—that the ‘‘artificial atom’’ viewpoint is vitally
important to understanding g factors—applies to all small
quantum dots.

Our results also point the way towards electric-field
control of g factors in quantum dots. g factor control via
manipulation of the electronic wave function in quantum
wells has already been used to control spin precession [27],
and to drive spin resonance [28]. Because of the large size
of quantum dots compared to atoms, moderate voltages
applied by electrical gates [21] can modify the dot shape,
energy levels, and g, and thus drive spin resonance in a
static magnetic field. Such control of electron spin reso-
nance in an individual quantum dot could assist ultrafast
manipulation of information encoded in electron or hole
02680
spin [29], as well as permit single-qubit gate operations for
quantum computation [30].

We calculated quantum dot g factors at T � 0 K using
8-band strain dependent k � p theory in the envelope ap-
proximation with finite differences on a real space grid
[31]. g came from the spin splitting in a magnetic field of
jBj � 0:1 T and the sign of g from the spin direction of the
lower energy state (parallel or antiparallel to ~B). Material
parameters were taken from Ref. [32].

The magnetic field was included by coupling to both the
envelope function and the spin. The envelope was coupled
to ~B using the standard prescription for introducing gauge
fields on a lattice. For example,

 � ~r� �x̂� �  � ~r� �x̂�
2�

!
 � ~r� �x̂�Ux� ~r� �  �~r� �x̂�U

y
x � ~r� �x̂�

2�
; (2)

where � is the grid spacing and Ux�~r� is the phase acquired
by an electron hopping from the site at ~r to the site at ~r�
�x̂. The U’s were determined by the requirement that
transport around a plaquette produced the Aharonov-
Bohm phase corresponding to the encircled flux, for ex-
ample

Ux� ~r�Uy� ~r� �x̂�U
y
x � ~r� �ŷ�U

y
y �~r� � exp�i�2B?e=@�;

(3)

whereB? is the magnetic field component perpendicular to
the plaquette. The electron spin was coupled to ~B though a
Pauli term for the Bloch functions, given by
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where �B is the Bohr magneton and ~� and ~J are the spin
matrices for spin 1=2 and 3=2, respectively. The g factors
for the Bloch functions are 2, 4

3 , and 2
3 for the conduction,

valence, and spin-orbit bands, respectively. The Bloch
function g factors are determined solely by the angular
momentum of the Bloch states.

As these numerical calculations are performed in a finite
box, numerical artifacts may arise if the total magnetic flux
through the box is not an integer number of the flux
quantum corresponding to a single electron [33]. To avoid
any such problems, the value of ~B was modified at the
edges of the box (within the barrier material) so as to make
the total flux in each of the x, y, and z directions an integer.
This allowed the use of both hard wall and periodic bound-
ary conditions, and comparison between the two boundary
conditions established that the box was sufficiently large to
avoid finite-size artifacts.

An advantage of this approach is that no further trunca-
tion of the basis is done after a bulk band basis is chosen.
Because the spin-orbit interaction is positive in the bulk
semiconductor constituents of the dot, it is energetically
favorable for the spin and orbital angular momenta to be
antiparallel to each other. (This is the ultimate reason for
the electron g < 2.) As many individual states make posi-
tive or negative contributions to g, a calculation in a
truncated dot state basis runs the risk of an unbalanced
choice of positive or negative contributing states. This can
produce an unphysical g for electrons (g > 2).

We now summarize the physical picture we have devel-
oped to understand the calculations shown in Figs. 1–3.
First consider the known origin of the effective g for
conduction electrons in a bulk semiconductor [26]. When
a magnetic field is applied, the orbital part of the wave
function is modified into Landau levels, corresponding to
quantized orbital angular momentum along the axis of the
magnetic field. In a single band model the Landau levels’
orbital angular momentum comes from the envelope func-
tion alone. When the conduction and valence bands are
coupled, there is also a contribution from the valence Bloch
functions, which have a significant spin-orbit coupling.
The Zeeman energy now splits the lowest Landau level
into two spin-polarized Landau levels, one with spin par-
allel to the quantized orbital angular momentum and one
antiparallel. Although the bare g � 2 lowers the energy of
the parallel spin state and raises that of the antiparallel
state, the spin-orbit interaction preferentially aligns spin
antiparallel to the orbital angular momentum. When that
effect is absorbed into an effective g, it makes g < 2.

The situation is modified significantly in quantum dots.
Instead of beginning with a continuous spectrum, which
then is modified into Landau levels, the spectrum in quan-
tum dots (with or without a magnetic field) is discrete.
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Thus the modification of the lowest-energy electron state
�C1� pair is proportional to the ratio of the cyclotron energy
to the energy splitting between that pair of states and the
next lowest pair, @!c=�EC2 � EC1�. For all but the largest
dots this ratio is very small, and the resulting orbital
angular momentum of the C1 states in a magnetic field is
very small, leading to g! 2. We refer to this effect as
quenching of the orbital angular momentum, and note that
there are similarities between this picture and that devel-
oped for crystal-field splitting of degenerate d and f states
for paramagnetic impurities in insulating solids [25] and
for splitting of the heavy hole and light hole subband
energies in quantum wells [13]. A significant difference,
however, is that these previous cases involve the splitting
of a discrete number of degenerate atomiclike states,
whereas the quenching here is of a continuum to individual
Kramers doublets.

To isolate the effects of angular-momentum quenching
from those due to strain and spherical symmetry breaking,
we first consider unstrained spherical InAs nanocrystals
(Fig. 1). The calculations were done with a high barrier
(10 eV) to avoid any leakage of the wave function outside
the dot. For large dots (Eg 	 0:41 eV) the calculation
agrees with the bulklike formula [26]; however, it rapidly
diverges from Ref. [26] for smaller dots; when the con-
finement energy equals the bulk band gap of InAs the
deviation from g� 2 predicted by Eq. (1) is 6 times larger
than the actual value. Hole g factors for these nanocrystals
show similar evidence of orbital angular-momentum
quenching (not shown). Note that the quenching of orbital
angular momentum for the electron and hole states is
compatible with the high fidelity selection rules for gen-
erating spin-polarized carriers in dots with optical means
[34], because the optical transitions connect states with
specific angular momentum (valence and conduction)
whereas the g factors probe how much angular-momentum
admixture is possible for B � 0.

Figure 2 shows g factors for the lowest-energy electron
state and hole state for spherical-cap InAs=GaAs dots as
the dot size decreases (and Eg increases). The dots have a
height h in the growth direction, �001�, and may be circular
or elliptical (extended in the �110� direction), according to
the ratio e � d�110�=d�1�10�. In Fig. 2, h and e are fixed as the
size changes (dots with the same h and e and different Eg
have different size base lengths d�110� and d�1�10�). For both
the electrons and holes the deviation of g from the
quenched case (g � 2) increases as Eg increases (and the
dot size decreases). For smaller dots, excited bound states
become squeezed out of the dot, and the states with which
the ground-state mixes are increasingly from the contin-
uum of states in the barrier material. Hence in the limit of a
very small dot g approaches the value corresponding to the
bulk barrier material. For very large dots, g should corre-
spond to the strained material within the dot. However, this
limit requires an extremely large dot, and is not reached for
the computationally tractable dot sizes considered here (it
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is in the nanocrystal calculations of Fig. 1). Measurements
for large dots [5] are shown as well. These measurements
cannot determine the sign of the g factor; we identify the
sign to be positive based on our calculations.

Using Eq. (1) with Eg and � replaced by the values
calculated for bulk InAs with the same strain as the InAs in
the dot leads to the electron g 
 �6. Increasing Eg to
include the largest possible confinement energy for a dot
state gives g 
 �0:5. The GaAs barrier has g � �0:44, so
any averaging approach would produce a negative g factor,
and the g factor should decrease as the quantum dot size
increases. Because of orbital angular-momentum quench-
ing the actual electron g factors shown in Fig. 2 are
positive, except for the largest dots considered, which
have g 
 �0:05, and the g factor increases as the quantum
dot size increases—the opposite trend.

As the approximate dot shape is frequently unknown, the
�001� hole g factors (Fig. 2) or in-plane electron g factors
(Fig. 3) may be usable as diagnostics for the dot height, and
the in-plane hole g factors (Fig. 3) for the elongation. Use
of in-plane electron g factors to diagnose dot height may
be particularly effective because their dependence on Eg
and e is weak. In-plane hole g factors, however, depend
strongly on both the height and elongation, but not on Eg.
The in-plane hole g factors are much smaller in magnitude
than the hole g factors along the growth direction. This is
qualitatively similar to the results of Ref. [17] for Si=Ge
quantum dots. However, for InAs=GaAs quantum dots the
sign of the hole g factor differs for the growth direction and
in-plane. The large anisotropy for holes is due to the
valence state splitting caused by confinement and strain.
Whereas electron states with arbitrary spin direction can be
constructed from the spin-degenerate up and down states,
the hole states in a dot are not fourfold degenerate angular-
momentum 3=2 states as in bulk materials, but are instead
split into two doublets (heavy and light holes) with differ-
ing orbital angular momentum projected along the growth-
direction axis. This suppresses the formation of states with
arbitrary spin direction [13].

We have shown that the g factors in quantum dots are
dominated by the atomlike phenomenon of angular-
momentum quenching, leading to electron and hole g
factor values and trends that differ substantially from those
seen in bulk semiconductors, and are closer to the bare
value of 2. For InAs=GaAs dots, strain and geometric
asymmetry also contribute to g, and result in strong g
factor anisotropy, especially for hole states. Careful study
of the anisotropy of the hole g factors can provide approxi-
mate information about the dot shape. Our unexpected
results for the electron and hole g factors suggest that the
‘‘artificial atom’’ picture promises additional surprises for
the physics of spin dynamics in quantum dots.
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