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Tunneling in Suspended Carbon Nanotubes Assisted by Longitudinal Phonons
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Current-voltage characteristics of suspended single-wall carbon nanotube quantum dots show a series
of steps equally spaced in voltage. The energy scale of this harmonic, low-energy excitation spectrum is
consistent with that of the longitudinal low-k phonon mode (stretching mode) in the nanotube. Agreement
is found with a Franck-Condon-based model in which the phonon-assisted tunneling process is modeled as
a coupling of electronic levels to underdamped quantum harmonic oscillators. A comparison with this
model indicates a rather strong electron-phonon coupling factor of order unity.
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FIG. 1 (color online). (a) Schematic drawing of a suspended
nanotube (NT) clamped between two Cr=Au electrodes on top of
silicon oxide. The underlying oxide is partially removed by a wet
etch step leaving the nanotube suspended. The highly doped
silicon plane is used as a global gate to tune the electrostatic
potential of the nanotube. (b) Scanning-electron microscope
micrograph of a suspended nanotube. The scale bar represents
200 nm.
In nanoelectromechanical systems, mechanical motion
affects electrical current and vice versa [1–4]. Of special
interest is the study of electron-phonon coupling in these
devices since tunneling of a single electron may induce a
displacement of the movable structure [5–10]. The inter-
action strength is characterized by the dimensionless
electron-phonon (e-ph) coupling constant g, which is pro-
portional to the ratio of the classical and the quantum
displacement. In bulk systems the e-ph coupling is gener-
ally weak and the coupling constant is orders of magnitude
smaller than 1. However, since the coupling dramatically
increases with decreasing device mass, nanoelectrome-
chanical devices may exhibit an intermediate to strong
e-ph coupling [11–13]. In this regime, current-voltage
characteristics are expected to exhibit additional steps
whose height can be used as an estimate of g. For example,
g is around one in the C60 molecular devices of Ref. [11],
while measurements on different C140 samples [12] indi-
cate a value of g between 0.2 and 8.

Carbon nanotubes are ideal systems for exploring elec-
tromechanical effects since they have a small diameter, a
low mass, and can be defect free on a molecular level. In
experiments on suspended nanotubes, different methods
have already been used to probe the bending [14,15] and
radial breathing mode (RBM) [16]. The measurements
show that the free-hanging tubes operate in the under-
damped regime of low dissipation. For the fundamental
bending mode the reported quality factor is about 100; for
the RBM it is estimated as high as 10 000.

In this Letter we present electronic transport spectros-
copy measurements on suspended single-wall nanotubes,
which show signatures of phonon-assisted tunneling, evi-
denced by the presence of a series of steps in the I-V
characteristics. Such steps form a harmonic low-energy
spectrum, whose energy scale and length dependence are
consistent with that of the longitudinal stretching mode. A
comparison with the Franck-Condon theory shows that the
e-ph coupling constant is of order 1.

Devices are fabricated by locating individual nanotubes
(laser ablation and chemical vapor deposition) on a
Si=SiO2 substrate using an atomic force microscope
06=96(2)=026801(4)$23.00 02680
(AFM) with respect to predefined markers. Subsequently,
the electrodes are made using conventional e-beam lithog-
raphy techniques and thermal evaporation of Cr (5 nm) and
Au (50 nm). The nanotubes are suspended by removing the
underlying SiO2 in a wet etch step using buffered HF [17].
A schematic sample geometry and a scanning-electron
microscope micrograph are shown in Fig. 1. In the experi-
ment the source and gate voltage are defined with respect to
the drain, which is connected to ground.

In Fig. 2 we show stability diagrams for three nanotubes
measured at (a) 10 mK and (b),(c) 300 mK where the
differential conductance, dI=dV, is plotted versus bias
and gate voltage. The three metallic nanotubes have a
length between source and drain contacts, L, ranging
from 0.14 to 1:2 �m. Their diameter d is between 1 and
1.4 nm as determined from AFM imaging. In the diamond
shaped regions (Coulomb diamonds) the current is zero
due to Coulomb blockade, and the charge number in the
dot is fixed. Regular and closing Coulomb diamonds in-
dicate single dot behavior [18,19] in all three samples for
the gate range shown. Notice that the diamonds in Fig. 2(a)
do close, as shown in the inset, which was taken at a
higher temperature (300 mK) in a different cooldown.
The low-bias current, however, is suppressed, which
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FIG. 2 (color online). Stability diagrams for three different
suspended nanotubes with a length in between contacts of
1:2 �m, 420 nm, and 140 nm for (a), (b), and (c), respectively.
The conductance (dI=dV) is plotted as a function of source-drain
voltage, V, and gate voltage, VG. Blue corresponds to low and
red to high conductance. Measurements have been performed at
T � 300 mK except in (a), where the base temperature was
10 mK. (a) Small region of a stability diagram showing closely
spaced sets of lines running parallel to the Coulomb diamond
edges for two charge states. At low bias, a strong suppression of
the conductance is present. Red lines indicate positive differen-
tial conductance; blue lines indicate negative differential con-
ductance. Inset: regular diamonds that close are observed in a
different cooldown at T � 300 mK. (b),(c) Diamond crossings
for two other samples, again showing lines parallel to the
diamond edges with energy separations smaller than expected
for electronic excitations.
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could be a signature of strong electron-phonon coupling
[5,9,10].

Excitations of a quantum dot appear as lines running
parallel to the Coulomb diamond edges in the stability
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FIG. 3 (color online). Current as a function of source-drain voltage
drawn (red) lines represent the step heights calculated in the Fra
parameter of 0.95, 1.1, and 0.5 for (a), (b), and (c), respectively. In the
Fig. 2) is plotted, showing an equally spaced, harmonic spectrum. Th
of (a), (b), and (c), respectively.
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diagrams [18]. At such a line, a new electronic level
becomes resonant with the leads and an additional trans-
port channel opens up. The energy of an excitation can be
determined by reading off the intersection point between
the excitation line and the Coulomb diamond edge on the
bias axis [19]. Furthermore, the excitations correspond to
the charge state of the Coulomb diamond they end up in.
Electronic excitations in nanotubes typically differ be-
tween adjacent charge states [20]. In Fig. 2(a), a dense
set of equally spaced excitation lines (starting from the first
electronic excitation) is clearly visible near VG � 210 and
230 mV; i.e., adjacent charge states exhibit a similar set of
excitations with approximately the same energy spacing.
The fact that excitations occur primarily in one direction is
due to asymmetric tunnel barriers [19].

The energy differences between the excitation lines of
Fig. 2 are shown in the insets of Fig. 3. In all three cases,
the excitation energy is an integer multiple of the first
(fundamental) excitation. Thus, they form a harmonic
spectrum with up to five levels. A linear fit yields an
excitation energy of 140, 690, and 530 � eV for the tubes
with length (a) 1:2 �m, (b) 420 nm, and (c) 140 nm,
respectively. These values are an order of magnitude
smaller than the expected mean electronic level spacing
given by � � hvF=2L, with h the Planck constant and
vF � 8:1� 105 m=s [21] the Fermi velocity.

A more natural explanation for the observed harmonic
spectra is a vibrational mode coupled to electron tunneling
[11]. Multiple steps with identical spacing would then arise
from the excitation of an integer number of vibrational
quanta. Indeed, the observed equidistant energy separation
is consistent with that expected from the longitudinal
stretching mode in the nanotubes. In Fig. 4, we plot the
energy of important low-energy vibrational modes of
single-wall nanotubes [22,23]. For comparison, we plot
the mean electronic energy level separation, �, in black.
The (blue) squares correspond to the fundamental vibra-
tional excitation energy extracted from the linear fits in the
insets of Fig. 3. The energy of the radial breathing mode
(green) does not depend on the nanotube length and equals
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at a voltage indicated by the vertical (green) lines in Fig. 2. The
nck-Condon model (see text) for an electron-phonon coupling

insets, the energy separation between the peaks or steps (lines in
e slope of the drawn line is 140, 690, and 530 �eV for the insets
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FIG. 4 (color online). Energy scales of different vibrations and
electronic excitations plotted on a log scale for a nanotube with a
1.4 nm diameter. The radial breathing mode (green) does not
depend on the length L. The bending mode vibrations (red) have
a L�2 dependence. The mean electronic level spacing (black)
and the stretching mode (blue) vibrations depend inversely on
the length.
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28 meV=d�nm�. The bending mode (red) has a L�2 depen-
dence [24] and an energy much smaller than the measured
excitation energy. The stretching mode vibration energy
(blue) is inversely proportional to the length [25], E �
�nh=L�

������������
Y=�m

p
, where Y is Young’s modulus, �m is the

density, and n is the vibrational quantum number. For
nanotubes with �m � 1:3 g=cm3, Y � 1 T Pa the vibra-
tional energy corresponding to the fundamental mode is
�110 �eV=L��m� [23]. As Fig. 4 shows, the data are in
good agreement with these predicted values.

The coupling of electronic levels with vibrational modes
(quantum harmonic oscillators) can be described in terms
of the Franck-Condon model [26]. According to the
Franck-Condon principle, an electron in an electronic tran-
sition moves so fast that the nuclear positions are virtually
the same immediately before and after the transition. As a
consequence, the transition rate is proportional to the
Franck-Condon factors defined as the square of the overlap
integral between the vibrational wave functions of the two
states involved. An important parameter is the electron-
phonon coupling factor, g � 1

2 �
x
x0
�2. This is the ratio of the

classical displacement length, x, to the quantum mechani-
cal oscillator length, x0 �

�������������
@=m!

p
. Alternatively, g �

F2

2@m!3 , where F is the force on, m the mass of, and ! the
frequency of the oscillator.

For low damping, the vibrational levels remain sharp
and the Franck-Condon model predicts steps in the current-
voltage characteristics that are equally spaced in energy
(bias voltage). In the presence of strong relaxation, the
normalized step heights are given by [5] Pn � e�ggn=n!.
In the strong coupling (g� 1) limit, the height of the first
steps is exponentially suppressed (phonon blockade)
[5,9,10]. Multiple steps arise only if g is of the order of 1
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or larger, and the observation of a spectrum of equally
spaced excitation lines therefore indicates that the e-ph
coupling in our suspended nanotubes must be rather strong.

In Fig. 3, the calculated (red) curves represent the step
heights (Pn) given by the Franck-Condon model with
strong relaxation discussed above. The symbols are the
experimental curves taken at the vertical (green) lines in
Fig. 2. Considering the simplicity of the model, reasonable
agreement is obtained in all three cases. The comparison
yields an estimate of g of 0.95, 1.1, and 0.5 in Figs. 3(a)–
3(c) respectively, indicating that it is approximately length
independent. We have also performed a similar analysis at
other gate voltages yielding the same g values.

The theoretical curves in Fig. 3 do not exactly follow the
measured ones. Better fits may be obtained if the influence
of a gate voltage and asymmetric coupling is considered
[5] or if coupling to excited electronic states [27] is con-
sidered or if the influence of damping or nonequilibrium
phonons (weak relaxation) is taken into account. In the
latter case the peak heights are expected to display a non-
systematic dependence on g and peak number [9].
Consideration of these effects is, however, beyond the
scope of this Letter.

The high value of the e-ph coupling (g� 1) is remark-
ably since in graphite the coupling between electrons and
longitudinal phonons is weak. A source of intermediate to
strong coupling could be the interaction between longitu-
dinal and transverse vibrations [28]. Alternatively, we find
that in suspended nanotubes the same e-ph coupling
mechanism as in the bulk [29] can lead to a g� 1 if the
electron density is inhomogeneous. The calculation pro-
ceeds as follows: The interaction energy of electrons with
the polarization charge is characterized by the energy

W � �
Z
dxdx0��x�K�x� x0�

@P
@x0

: (1)

Here, ��x� is the density of excess charge produced by one
electron, K�x� x0� is an interaction kernel, which we
approximate by ��x� x0� for the case that interactions
are effectively screened by the gate, and P�x� � e�0z�x�
is the polarization vector. The parameter �0 is the ion
density and z�x� is the displacement, which in the single-
mode approximation becomes z�x� � An sin��nx=L�.
Calculating the force F � �@W=@An, we obtain

F �
e�0�n
L

Z L

0
dx��x� cos

�nx
L

: (2)

If the excess charge density is uniform, ��x� � e=L, F � 0
for all modes. The incorporation of interactions that are
screened at distances longer than the distance to the gate
yields a force that scales as L�2. In this case, the coupling
parameter g also scales as L�2 and typical values are in the
order of 10�3, in apparent contradiction with the experi-
mental data.

Assuming that the charge is localized in the center of the
tube, ��x� � e��x� L=2�, the force is zero for odd har-
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monics, but for even harmonics, n � 2l, it reads Fl �
��1�le2�02�l=L. This results in a coupling parameter
that is length independent and scales as l�1: higher modes
are coupled weaker to electrons. Numerical estimates show
that g� 1. Localization of an electron in a point away from
the middle produces coupling to both odd and even modes.
Note that the electron does not have to be strongly local-
ized to produce a g� 1. Such a nonuniform density can be
created by impurities located in the substrate or induced by
a redistribution of electrons in a suspended tube bent by a
underlying gate electrode [30].

An interesting feature of the data is the appearance of
negative differential conductance (NDC) in the current-
voltage characteristics. NDC is very pronounced in
Fig. 3(a), but is also present in Figs. 3(b) and 3(c).
Although several explanations for NDC have been put
forward, its origin remains unclear. Koch and von Oppen
[10] showed that for low relaxation and strong e-ph cou-
pling, NDC features appear, although they do not follow
regions with strong positive differential conductance
(PDC) as in our data. McCarthy et al. [6] have shown
that NDC features can be due to an e-ph coupling that is
voltage dependent. Their calculations also reproduce the
catastrophic current decrease of Fig. 3(a) for bias voltages
higher than 3 mV. However, at the moment we do not know
how such a voltage dependence would arise in suspended
tubes. Finally, Nowack and Wegewijs [27] have considered
a Franck-Condon model with a coupling to an electronic
ground state and its excited state. They show that the
competition between the two states generates strong
NDC effects. NDC and PDC lines may have the same
gate voltage dependence preceded by a region of sup-
pressed current. This scenario may especially be relevant
for the data in Fig. 3(a).

In summary, transport measurements on suspended
single-wall carbon nanotubes show signatures of phonon-
assisted tunneling, mediated by longitudinal vibrational
(stretching) modes. The current-voltage characteristics
show multiple steps whose heights are in reasonable agree-
ment with the Franck-Condon predictions if the e-ph cou-
pling constant is of order unity. Suspended nanotube
quantum dots form an interesting model system for future
studies on the interaction between single electrons and
quantized phonons in the intermediate to strong electron-
phonon coupling limit.
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