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Transport Barrier inside the Reversal Surface in the Chaotic Regime of the Reversed-Field Pinch
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Magnetic field lines and the corresponding particle orbits are computed for a typical chaotic magnetic
field provided by a magnetohydrodynamics numerical simulation of the reversed-field pinch. The m = 1
modes are phase locked and produce a toroidally localized bulging of the plasma which increases particle
transport. The m = 0 and m = 1 modes produce magnetic chaos implying poor confinement. However,
they also allow for the formation of magnetic islands which induce transport barriers inside the reversal

surface.
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The reversed-field pinch (RFP) is a magnetic configura-
tion for plasma confinement where the toroidal field re-
verses slightly at the edge. Experiments and viscoresistive
MHD simulations of the RFP reveal that this configuration
may exist in a turbulent multiple helicity (MH) state.
Strong temperature and density gradients are located at
the reversal [1-4], but their origin is still under debate.
This Letter aims to show that they are due to the pres-
ence of magnetic islands in the reversal region. The exis-
tence of such islands is indicated by several experimental
measurements: total radiation and soft x-ray tomography
[5,6], spectroscopy [7]. These measurements are consistent
with the reconstruction of the last closed flux surface from
edge magnetic fluctuation spectra [8].

On the basis of field line tracing applied to MHD simu-
lations and of analytical Hamiltonian calculations, this
Letter shows that the modes with poloidal number m = 0
and m = 1 have two opposite effects on particle confine-
ment. The dominant one is negative: the modes produce
magnetic chaos in the ¢ > 0 region [3,9] which implies
poor confinement. Furthermore, if m = 1 modes are phase
locked, they also produce a toroidally localized bulging of
the magnetic field lines and of the chaotic sea which
increases transport as observed in experiments [10].
However, there is a secondary effect of m = 0 and m =
1 modes that mitigates their negative action on confine-
ment: they allow for the formation of magnetic islands
which induce a transport barrier inside the reversal radius.

The numerical part of this work is performed in two
steps. First the 3D MHD nonlinear, viscoresistive cylindri-
cal code SPECYL [11] computes the typical magnetic field

of a MH state (§ =3 X 10* and © = 744} = 1.6) used as

a reference throughout the Letter. The simulation involves
m = 1 modes with n up to 54, and m = 0 modes with n up
to 25; the aspect ratio is Ry/a =4 and the magnetic
boundary is ideal. Second, the Hamiltonian guiding center
code ORBIT [12] is used to compute magnetic field lines or
particle orbits corresponding to the reference magnetic
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field. This field was made more realistic by extrapolating
the m = 1 spectrum of internal modes up to n = 250 with
an exponential decay. Newcomb’s eigenfunctions provide
the radial profile of these modes.

We define the mode phases as follows. The vector po-
tential is A = ¥/Vz — xV@ with the gauge condition A, =
0, where (r, 6, z) are the usual cylindrical coordinates, s
and — y are the poloidal and toroidal flux, respectively.
Then the magnetic field is of the form B = Vi X Vz —
Vx X V6. With these notations an (m, n) mode corre-
sponds to a component x,,,()cos(k,z+mé+ a,,,) in
X, wWhere k, = —n/R, and «,, , is the mode phase.

To describe the magnetic field line structure in the MH
state, we perform two gedanken experiments. In the first
one we set to zero all m = 1 modes, but keep all the m = 0
ones in the ORBIT calculation. Then, m = 0 modes, reso-
nating at the reversal, form a chain of islands which does
not develop chaos, since the magnetic structure is sym-
metrical in 6, leading to conserved magnetic flux surfaces.
This is shown in Fig. 1(a): the chain of islands, with their
respective O and X points, stretches continuously, through-
out the toroidal direction (the picture is an equatorial cut of
a torus, with the toroidal angle and the minor radius in the x
and y directions, respectively; ¢ = z/Ry). All of the
modes have the same phase (&, = 0, Vn).

In the second gedanken experiment we keep the m = 1
components and set to zero all m = 0 modes in the ORBIT
calculation. Then we get the less obvious result that m = 1
modes alone do form an m = 0 chain of islands too, as
shown in Fig. 1(b), which draws its origin from the beating
of m =1 modes, as shown below in the Hamiltonian
formalism. The island chain is not continuous in the toroi-
dal angle, but it is interrupted at ¢ = 0. This is due to
phase locking: all of the m = 1 modes tend to lock-in
phase in the MH SPECYL simulations («;, = 0 Vn). This
is the numerical analogue of the possibly rotating MH
bulging of the RFP plasma known as “large helical defor-
mation” (LHD), or “slinky” [13].
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FIG. 1 (color online). Poincaré plot of magnetic field lines in
the (r, ¢) plane (a) m = 0 modes only, (b) m = 1 modes without
m = 0 modes, (c) m = 0 and m = 1 modes together.

Figure 1(c) displays the ¢ = 0 island chain due to the
cooperative effect of the above m = 0 modes and m = 1
beating. In such a system the LHD is still present and now
weakly chaotic regions near the X points are present.

To understand transport in this MH state, we simulated
the behavior of ions with bulk energy (250 eV), interacting
with the background through suitable classical and pitch-
angle scattering operators. The dimensionless collision
frequency related to this interaction is v7,, = 1.5 where
Tior 18 the (toroidal) transit time and v refers to the colli-
sionality estimated in the RFX device [1]. The reference
magnetic configuration is the case shown in Fig. 1(c), with
locked m = 0 and m = 1 modes (ay, = a;, = 0), but, to
single out the contribution to transport due to the LHD, and
to better study the weakly chaotic region near the X points,
we also consider a case where the phases of the m = 0 and
m = 1 modes are randomized. In such a system the LHD is
no longer present, but the weakly chaotic regions near the
X points are still observed. The Poincaré plot related to this
case is shown in Fig. 2(a).

We define the loss time of test particles deposited in the
core as the time spent by 50% of uniformly toroidally
distributed particles, plus one, to travel from the deposition
radius (rgep = 0.2 X a) to a prescribed radius r,, where
they are collected. The profiles of 7y (7o) for random and
locked phases are rather flat in the core, and display a steep
gradient near the reversal surface [Fig. 2(b)], indicating the
presence of a transport barrier. We also notice that the
slowing down of particle transport starts at a value of r/a
smaller by = 10% than the reversal radius of the mean axial
field (r/a = 0.84) indicated by the dashed line in Fig. 2(b)
and by the island O points in 2(a). This shows that the
transport barrier occurs before the reversal surface, as
could be expected due to the finite island width. In addi-
tion, if we compare the 7, profiles with random and
locked phases, we see that in the random case the loss
time is larger.
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FIG. 2 (color online). (a) Poincaré plot with random phases for
the m = 0, 1 modes; (b) radial profile of loss times 7. in two
conditions (green=random, blue=locked phases). The dashed
line in (b) corresponds to the reversal surface [orange line in (a)].

To understand these differences, and to visualize the
different behaviors of particle motion across the structure
with or without the LHD, we show, in Fig. 3, how particles
deposited at r/a = 0.7 are transported radially when time
increases (top to bottom of the figure). The left part corre-
sponds to random phases, while the right one corresponds
to phase locking. Radial transport turns out to be localized
close to ¢ = 0 in the latter case, with stronger particle
oscillations toward low r/a’s (which means a strong con-
nection of edge and core plasmas). This is consistent with
the fact that in Fig. 2(b) the difference between random and
locked cases is not confined in the edge, but it is already
visible at r/a = 0.72. An experimental indication of this
edge-core connection is the occurrence of a thermal crash
of high current MH discharges in concomitance with the
cooling of the plasma in the LHD region in RFX [14].
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FIG. 3. Diffusion plots of test particles: particles are deposited
at r/a = 0.7, and allowed for diffusing in the plasma (top to
bottom corresponds to increasing time steps). (a)—(c) phases are
random; (d)—(f) phases are locked.
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As shown in the discussion of Fig. 1, the ¢ = 0 islands
survive in the presence of a realistic MH spectrum. Differ-
ent decay laws in n have been checked, without changing
our conclusions. Since experiments, such as TPE-RX [4]
and MST [15], show that the increase of m = 0 mode
amplitude is detrimental for confinement, we performed
a parametric study of the evolution of loss times with the
m = 0 amplitude. First, in order to compare our result to
the experimental ones, we scaled down the amplitude of
the numerical spectrum of modes to reach the experimental
order of magnitude for a Lundquist number S = 10°, as
shown in [16]. By this procedure a new reference spec-
trum was obtained scaled down by 0.4 (which, in particu-
lar, means: b,,_y/By(a) = 0.4%). Figure 4(a) displays a
blowup of the Poincaré map referring to this new reference
spectrum. Then, increasing by a factor of 5 the m =0
spectrum, chaos is stronger, but ¢ = 0 islands are still
present [Fig. 4(b)]. Finally, Fig. 4(c) displays 7,,.(0.98a)
as a function of b,,_y/Bg(a). i decreases by almost a
factor of 3 in the considered range of b,,_y/By(a), con-
sistently with the increase of chaos displayed in the maps.
By defining an empirical diffusion coefficient as (D) =
(Feol = Tdaep)*/2T1oss(Feor), We find an almost linear growth
with b,,_,/By(a), in agreement with experiments [4].

In order to understand the above numerical results, we
now introduce the classical description of magnetic field
lines as orbits of a Hamiltonian system [17], as it enables
the direct application of concepts and tools of Hamiltonian
chaos to the magnetic field structure. As B, does not
reverse in the RFP, ¢ is single valued and monotonic
with respect to r. Therefore ¢, z, and 6 may be taken as
independent variables. It is easily checked from the pre-
vious expression for B that x(i, z, #) is the requested
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FIG. 4 (color online). (a) Poincaré map obtained with mode
amplitudes scaled down to experimental values; (b) same map,
obtained by multiplying the m = 0 amplitude by 5; (¢c) Tyog
evaluated at the edge, as a function of the normalized m = 0
amplitude.

Hamiltonian, where ¢ and z are the conjugate variables,
and 6 plays the role of time. The relation ¢ = (r) makes
easy the translation of the puncture plots displayed in this
Letter into Poincaré plots in conjugate variables. The case
where there are only m = (0 modes corresponds to a
Hamiltonian y,,—o which is 8 independent and thus inte-
grable. However, this Hamiltonian as a function of z may
have several extrema. As for the motion of a particle in a
potential with several extrema, this brings in phase space
an island structure corresponding to nested 8-shaped sepa-
ratrices. These features are visible in Fig. 1(a).

The Hamiltonian corresponding to Fig. 1(b) is
Xm=1(, 2, 0) = xo(¢h) + €3, x1,,(¥) cos(¢,) where n
runs over the set of m = 1 modes of interest and where
&, =k,z+ 60 + «a,. It is the sum of an axis-symmetric
part and of a series of m = 1 resonant terms (‘‘reso-
nances’’) of order epsilon. Consider the canonical trans-
formation T from (i, z) to (W, Z) defined by the generat-
ing function G(V¥,z 60) =Yz — €Y, x1.,(¥)sin(¢,)/
[k,q(¥) + 1], where q() = dxo(h)/d¢p. It yields Z =
dG/oV¥ and y=0G/oz=F(V,z0), where F(V, z, ) =
Y —€>,k,x1.,(¥)cos(¢,)/[k,q(¥) + 1]; then the new
Hamiltonian is x!_, = xm=1 — 0G/00. Transforma-
tion T suppresses the resonances of y,,—; to order €. There-
fore, in Hamiltonian x/,_,, resonances are of order €? only,
which means that V¥ is closer to be a constant along field
lines. The € terms correspond to the beating between the
resonant terms of y,,—;, and are therefore either of the
m =0 or of the m =2 type. The m = 0 terms in y,,_,
reveal the existence of a series of m = 0 islands in the
(W, Z) dynamics that translate into m = 0 islands in the
(¢, z) dynamics too.

Since x/,_, is angle independent at order e, setting ¥ =
constin ¢ = F(W, z, 6) yields an approximation, correct to
order €, of the shape of the flux surfaces when they exist. If
there is phase locking of the various m = 1 Fourier terms
in y,,—1, this translates into a graph of F' as a function of z
with a zigzag next to z = 0. So is the graph of #(z), and,
consequently, that of r(z). Since F has only a finite number
of Fourier components, its graph displays a series of rapid
oscillations both in the positive and negative ¢ directions
(the celebrated Gibbs phenomenon). In fact the zigzag
applies to the chaotic sea as well, which explains how
this sea intrudes toward large r’s at ¢» = 0. As a conse-
quence, radial transport results from the combination of a
coherent zigzag and of chaotic transport which brings a
topological connection between the core and the edge. This
is visible in Figs. 3(d)-3(f) also. In Fig. 3(f) the zigzag
provides particles backscattered up to r/a = 0.4. In
Figs. 3(a)-3(c), since the «,,’s are random, F is no longer
Dirac-like as a function of z, which decreases transport, but
the small denominators in the transformed Hamiltonian
still bring in chaos.

The generating function G has denominators D, =
k,q(¥) + 1 which vanish for ¥ = ¢, where #, is the
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resonant value of ¢ corresponding to mode (1, n). As a
result in the expression for y/, _,, products of these de-
nominators are present. These denominators are small for
¥ close to the ,’s, which brings the breakup of
Kolmogorov-Arnold-Moser tori (magnetic surfaces) and
triggers chaos in the region where the m = 1 modes are
resonant. Let ¢ be the resonant value of ¢ corresponding
to (0, n) modes defined by g(¢*) = 0. For ¥ close to *,
the D,’s are large, which brings little chaos there.

The Hamiltonian corresponding to Fig. 1(c) is x,—o.1>
which is the sum of y,,—, and of the resonant part of y,,—;.
If we perform again the change of coordinates defined by
G, we find a Hamiltonian Xin:m where the m = 0 contri-
bution comes from both the m = 0 modes of y,,—o and
from the beating of the m = 1 modes of y,,—; already
present in x/ _,. As a result, the island structure in
Fig. 1(c) is the result of a cooperative action of the
m=0 and m =1 terms of y,,—o;. The zigzag of the
chaotic sea can be understood as above. If the m =0
modes are chosen so as to cancel exactly the m = 0 con-
tribution of the beating of the m = 1 modes in x|,_ . no
m = 0 contribution is present in this Hamiltonian, which
decreases chaos at reversal. This latter result implies that
the presence of m = 0 resonances is not always negative,
in contrast to what occurs for the experimental phase
relation of the MHD modes as shown in Fig. 4. This
indicates a possible way of controlling the g = 0 barrier.
It consists of trying to obtain a no-resonance, no-island
condition, by reducing the overall m = 0 resonance am-
plitude, with a local compensation of both m = 0 modes
and the m = 0 terms of the m = 1 beating present in
Xin—o,1- This operation will be attempted in RFX by means
of the new toroidal coil system [18]. A still open issue is
how the plasma is going to react, MHD-wise, to the ex-
ternally applied field. This could complement previous
attempts to diminish chaos, either by exploiting the exis-
tence of a spontaneous, helically symmetric state called
quasisingle helicity (QSH) [19], or by applying a time-
varying electric or magnetic field at the edge [15,20,21].

We can define a canonical transformation suppressing
all resonances of x,,—g to order € by completing G with
new terms tailored for the resonant terms of y,,—. Because
of the m = 0 modes, the transformed Hamiltonian has
resonant terms with denominators involving powers of
q(V). These denominators are now small for ¥ close to
*, which explains why chaos is stronger in the reversal
region in Fig. 1(c) than in Fig. 1(b). In Fig. 1(c), as usual,
chaos develops from the 8-shaped separatrices of the m =
0 resonance to form chaotic layers which are now thick
enough to be visible. However in such thicker layers the
motion must still come close to the X points which are
perturbed versions of those of the m = 0 island defined by
Xm—=o (these points are structurally stable). Linear theory
tells that a close encounter with an X point is a slow
process, which explains why chaotic transport is shown

in Fig. 2(b) to be slowed down in the island domain. This
discussion sheds light on the role of toroidicity, which
introduces n sidebands in the m = 0 spectrum [22].
These translate in an additional ,\/ﬁ,‘fzo term, with ampli-
tudes xg, () decaying with n like the m = 1’s. A mag-
netic reconstruction of RFX (Ry/a = 4) has shown a
change of the islands’ shape, and an increase of chaos
(smaller 7},), but in a way that the cylindrical picture still
holds.

In conclusion, this Letter shows the existence of a
transport barrier in the reversal region of the MH state.
Chaos in this region might be minimized by applying an
m = ( perturbation related to a vanishing island amplitude.
This latter condition also corresponds to an axis- or helical-
symmetric RFP, which remain the ideal chaotic-transport-
free configurations [19,20].
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