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Predicting the Progress of Diffusively Limited Chemical Reactions in the Presence
of Chaotic Advection
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The effects of chaotic advection and diffusion on fast chemical reactions in two-dimensional fluid flows
are investigated using experimentally measured stretching fields and fluorescent monitoring of the local
concentration. Flow symmetry, Reynolds number, and mean path length affect the spatial distribution and
time dependence of the reaction product. A single parameter ��N, where �� is the mean Lyapunov exponent
and N is the number of mixing cycles, can be used to predict the time-dependent total product for flows
having different dynamical features.
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Chemical reactions in solution are enormously enhanced
by mixing, which brings the components into intimate
contact along lines or surfaces. While turbulent flows are
effective in producing mixing, even laminar velocity fields
can produce complex distributions of material and promote
reaction through ‘‘chaotic advection,’’ in which nearby
fluid elements separate exponentially in time. For fast
reactions, the overall rate is determined by diffusion of
reactants into the reaction zones, a process that is aug-
mented by the stretching of fluid elements.

The interplay of stretching, diffusion, and reaction has
been investigated in various one-dimensional (1D) [1–3]
and 2D models [4–8] in both open and closed domains. For
irreversible, fast chemical reactions, numerical studies
have attempted to relate product concentration growth to
the stretching properties of the flow. At early times, and
assuming uniform stretching leading to exponentially
growing reactant interfaces, the product growth is also
expected to be exponential [9–11]. Several numerical in-
vestigations have shown that inhomogeneous stretching
should strongly affect local and overall reaction progress
[4,9,12]. At later times, and using the passive scalar ap-
proximation in the presence of diffusion (valid for an
infinitely fast reaction), several different asymptotic func-
tional forms for the product growth have been predicted
[3,6,13,14]. Boundary effects may lead to different regimes
as time evolves [11].

However, there has been little opportunity to test theo-
retical models because of the difficulty of measuring the
stretching properties of experimental flows. Here, we use a
recently developed method to measure stretching fields of
two-dimensional time-periodic flows [15], which quantita-
tively describe the local finite time Lyapunov exponent
field, and we apply it to a fast reaction in order to address
a fundamental question: how does chaotic advection influ-
ence the spatial distribution of the reaction product and the
time dependence of product growth? While locally the
reaction progress is related to the stretching properties of
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the flow, we show that the spatial average of the product
concentration, which is proportional to the total quantity of
product, depends on time and on the mean Lyapunov
exponent in a way that is independent of the spatial struc-
ture of the flow (cf. Fig. 4). We give a simple function
describing this dependence.

The experimental configuration, described in more de-
tail elsewhere [16], is a thin fluid layer (1 mm thick)
containing the reactants that overlies a somewhat deeper
conducting fluid layer (3 mm thick). Chaotic flows are
created by magneto-hydrodynamic forcing of the conduct-
ing fluid layer. A time-periodic electric current (with fre-
quency f in the range 10–140 mHz) passing through the
lower layer, in the presence of an array of magnets, drives a
time-dependent vortex flow that may be either spatially
ordered or disordered depending on the magnet arrange-
ment. The fluid is a 20% glycerol-water mixture (viscosity
� � 1:74 cP, density � � 1:1 g=cm3), about 10� 10 cm
in size, but only the central 8� 8 cm is imaged. The flow
in the upper layer is nearly two dimensional [17] and
typical rms velocities (U) are 0.05 to 0:7 cm=s. The
Reynolds number, Re � �LU=�, based on the mean mag-
net spacing (L � 2 cm) is in the range 5 to 75. The path
length parameter, p � U=Lf, which describes the mean
displacement of a typical fluid element in one forcing
period, is in the range 0.5 to 3.5.

We investigate reactive mixing using an aqueous acid-
base reaction NaOH� HCl! NaCl� H2O, or H3O� �
OH� ! 2H2O, in the upper fluid layer. We write it sche-
matically as A� B! 2P. The reaction is fast and second
order. Its rate constant is k � 1:1� 108 M�1 s�1, and the
reaction speed is characterized by the Damköhler number
Da � kC0L2=D, based on the ratio of the diffusion time
scale (L2=D) to the reaction time scale (kC0). Here, the
diffusion constant D of either acid or base with its counter-
ion is about 10�5 cm2=s, and C0 � 2:2� 10�2 M is the
initial reactant concentration. We note that Da is large
(>105), so that the reaction is limited by the diffusion
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fluxes toward the lines of contact. However, diffusion is
enhanced by the stretching of interfaces. The relative im-
portance of stretching and diffusion is given by the
(Lagrangian) Peclet number Pe � L2 ��=D, where �� is the
mean Lyapunov exponent of the flow. Here, Pe is typically
large and in the range 3:48� 105 to 1:02� 107.

To determine fluid stretching, we first obtain high reso-
lution velocity fields using particle tracking methods de-
scribed elsewhere [15]. Streamlines of the measured
velocity fields for both ordered and disordered magnet
array configurations at Re � 56 (and p � 2:5) are shown
in Figs. 1(a) and 1(b), respectively. The disordered flow has
no spatial symmetry while the ordered flow has reflection
and discrete translation symmetry along the coordinate
axes. Regular (nonmixing) regions are found in the ordered
flow at a given Re, and in the disordered flow at low Re.

Next, we use the velocity fields to construct displace-
ment maps over a selected time interval �t, and then
compute stretching fields from the maps by differentiation
[15]. This method, originally developed in numerical stud-
ies, provides high resolution stretching fields [18,19].
Examples are shown in Figs. 1(c) and 1(d). The local
stretching (S) measures the deformation of an infinitesimal
circular fluid element located initially at �x; y� over the
interval �t. The local finite time Lyapunov exponent is
defined as � � �logS�=�t. Stretching fields computed over
1 period, corresponding to the disordered and ordered array
at Re � 56 (p � 2:5), are shown in Figs. 1(c) and 1(d),
respectively. Both fields show a wide distribution of
stretching values [20] stronger at some locations than at
others by a factor of 1000. In the ordered case [Fig. 1(d)], it
is clear that the stretching is highly inhomogeneous, being
much larger along lines passing through stagnation (hyper-
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FIG. 1. Streamlines computed from measured velocity fields at
Re � 56 and path length p � 2:5 for (a) disordered and
(b) ordered magnet array configurations. The ordered case shows
clear lines of mirror symmetry. Corresponding stretching fields
for (c) disordered and (d) ordered flows, showing the magnitude
of stretching over an interval �t � 1 period. Regions of strong
stretching are localized in both cases.
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bolic) points of the flow than in other regions. The stron-
gest overall stretching occurs for the disordered array
[Fig. 1(c)], due in part to the lack of spatial symmetry of
the velocity field. We also find stronger stretching for flows
with larger p at a given Re and magnet array configuration.
The mean Lyapunov exponent �� is computed by averaging
the local values over the image domain.

We now show in Fig. 2 the reaction of initially segre-
gated aqueous solutions containing reactant A (acid) and
reactant B (base) at Re � 37 and Re � 56 for the disor-
dered flow, and also at Re � 56 for the ordered flow.
Initially, a solid barrier [the dotted line in Fig. 2(a)] sepa-
rates the acid, which contains a pH sensitive fluorescent
dye, from the base. The barrier is lifted and the reaction is
observed over varying numbers N of cycles. (N � 10 and
N � 30 are shown in the upper and lower rows of Fig. 2.)

We define normalized concentration fields for the acid A,
base B, and product P, as follows: ~A � A=A0, ~B � B=B0,
and ~P � P=Pfinal, where A0 and B0 are the initial reactant
concentrations, and Pfinal is the product concentration in
the fully reacted state. Using separate calibration experi-
ments, we determine ~A�x; y; t� from the local light inten-
sity. From the conservation of material expressed in the
statement A� B! 2P, it can be shown that averaged over
the entire cell h ~Pi � 1–2h ~Ai, where h ~Ai � 1=n

Pn
j�1 Aj,

and n is the number of pixels in the image. Though this
relation is not accurate locally due to advection and diffu-
sion, we use ~P � 1–2 ~A as an approximation to display the
local normalized product concentration field.

As time evolves, the interplay of stretching, diffusion,
and reaction creates a complex pattern, with regions of
high (red) and low (dark) normalized product concentra-
tion. The development of convoluted interfaces is evident
early. At longer times, systematic differences between the
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FIG. 2 (color online). Normalized product concentration fields
( ~P) vs number of periods (N) at p � 2:5. (a) Re � 37 (disor-
dered), N � 10; (b) same as (a) for N � 30; (c) Re � 56 (dis-
ordered), N � 10; (d) same as (c) for N � 30; (e) Re � 56
(ordered), N � 10; (f) same as (e) for N � 30. Fully reacted
regions appear in red, as shown in the color bar. Unreacted
regions are shown in black.
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FIG. 3 (color online). (a) Spatial averaged normalized product
concentration h ~Pi as a function of time (or N) and Re for several
different flows (D � disordered, O � ordered, all at p � 2:5).
(b) h ~Pi vs mean Lyapunov exponent ( ��) for various N (disor-
dered flows for various Re). Lines are added to guide the eye.
Product growth is slow for small �� but accelerates for large �� at
later times.
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different flows become clear. For Re � 37 (disordered
array), the reacted regions are spatially extended, but large
unreacted regions remain even after 30 periods. This flow
departs less from time reversibility, a necessary condition
for mixing [16], due to its lower inertia than does the Re �
56 case. Even in the reacted regions, the product concen-
tration is small at lower Re.

Product formation is also affected by the extent of
regular (nonmixing) islands, which are favored by the
mirror symmetry of the ordered flow [Figs. 2(e) and
2(f)], but that also occur for the disordered flow at the
lower Re [Figs. 2(a) and 2(b)]. These are regions of low
stretching where the interface between reactants grows
approximately linearly in time, and the local reaction rate
is less than in regions of high stretching. Such isolated
regions are not visible in Figs. 2(c) and 2(d) (higher Re �
56, disordered flow), where the accumulated product is
higher than it is in the ordered flow for the same Re and
reaction time. These qualitative differences show that the
product distribution is substantially affected by the flow
pattern.

Next we explore the evolution of the spatial average of
the normalized product h ~Pi (or the total quantity of prod-
uct) as a function of time for flows having different dy-
namical features. Figure 3(a) shows that the high Re and p
disordered flow produces the fastest product growth, while
lower Re, p, or spatial order substantially reduces the
growth rate. The reason is that irreversibility due to inertia
(large Re), large particle displacement (p), and the absence
of barriers to transport (disorder) are required for rapid
mixing. For all flows, the initial product growth is roughly
linear rather than exponential in time. This is especially
clear for low Re and ordered flows, where there are sub-
stantial low stretching regions. Although the simplest theo-
ries suggest exponential early growth [11] this is not
apparent in the data, most likely due to the wide distribu-
tion of local stretching rates first pointed out in Ref. [15]. A
numerical study in 2D flows [4] also finds that nonchaotic
regions lead to subexponential initial product growth.

The average normalized product h ~Pi is most usefully
parametrized by the mean Lyapunov exponent �� rather
than Re or p. In Fig. 3(b), we show the variation of h ~Pi
as a function of �� at different numbers of periods N for
disordered flows with different Re (p � 2:5). The growth
with �� is approximately linear for small �� but accelerates
for large �� at the later times.

Although the concentration patterns are complex, the
evolution of h ~Pi (at least after an initial transient) turns out
to be a function only of N and ��. In Fig. 4, we plot h ~Pi
versus ��N for the disordered flows at various Re and p. We
find that product concentration curves collapse onto a
single master curve with no adjustable parameters. This
is a surprising result because even though the flows have
the same magnet array configuration, they possess different
degrees of time reversibility and mean particle displace-
02450
ments per cycle, and regular regions occur to a different
extent in the various flows. In the insert to Fig. 4, we show
that this scaling behavior can be extended to ordered flows
as well. Remarkably, the rescaled ordered flow data for
different Re fall onto the same master curve as the disor-
dered array cases, which include various Re and p.

The dependence of product concentration on �� and time
has been recently considered theoretically [21] using a
simplified model for the reaction interface. The authors
suggest that after a short time (t > 1= ��) the normalized
concentration should be described by

h ~Pi � 1� exp��a ��N�; (1)

where a is a constant. A similar relationship is also found
in a numerical study using periodic boundary conditions
for 2D flows [14]. This result, shown by the dashed line in
Fig. 4 for the best fitting value of a, describes our data
1-3
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FIG. 4 (color online). Dependence of h ~Pi on the mean
Lyapunov exponent ( ��) and period N for disordered flows at
various Re and p. Insert: early behavior for both ordered and
disordered flows (at various Re and p). The dashed and solid
lines correspond to Eq. (1) (a � 0:00263) and the empirical fit
described in the text, respectively.
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adequately for ��N < 300. However, for larger values, h ~Pi
grows more rapidly than this form predicts.

Other theoretical works show a double exponential
growth, or a more complex spatiotemporal behavior de-
pending on the reaction rate [3,13] or the presence of
boundaries [11]. Finally, one might consider a solution of
Floquet form consisting of a sum of several exponentials
[22], since the flow is periodically driven. However, none
of these forms is found to fit the data over the entire range
of ��N.

We can fit the entire data set (ordered, disordered, and
different Re and p) to a single empirical function of
the form h ~Pi � 1� exp��� ��N � �� ��N�2�, where � �
1:8�	0:19� � 10�3 and � � 6:2�	0:25� � 10�6 are con-
stants. (However, the constants � and � could depend on
the initial shape of the reaction interface, a variable we did
not explore.) Note that this equation (solid line in Fig. 4)
fits the data over the entire range reasonably well. For the
lower values of ��N, the quadratic dependence is weak and
we recover Eq. (1). The more rapid approach to saturation
at late times might be due to the transport of initially
segregated reactants to regions where they can react. A
similar transport effect was demonstrated by Voth et al.
[16] for passive mixing. Note that we cannot reach the fully
reacted sate for �� < 3.

In conclusion, we study the interplay of stretching,
diffusion, and fast reaction experimentally, with direct
measurement of the stretching fields. The strong spatial
heterogeneity of stretching, with a distribution spanning
many decades, [15,20], causes the early product growth to
deviate strongly from the exponential behavior expected
for uniform stretching. Spatial symmetry, particle displace-
02450
ment, and the departure from time reversibility affect the
reaction progress (and ��). However, the normalized prod-
uct concentration up to the fully reacted state approxi-
mately follows a single master curve with ��N as the
independent variable, where �� is the measured mean
Lyapunov exponent and N is the number of mixing cycles.
This result allows quantitative prediction of the total prod-
uct as a function of time for several chaotically mixing
flows with different dynamical features such as spatial
symmetry and the extent of departures from reversibility.
This scaling is not expected to apply to turbulent flows, but
may be appropriate for a variety of fast reactions that are
stirred by chaotic advection.

We thank Z. Neufeld and G. Haller for fruitful discus-
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