
PRL 96, 023903 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JANUARY 2006
Turning Light into a Liquid via Atomic Coherence
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We study a four-level atomic system with electromagnetically induced transparency with giant ��3� and
��5� susceptibilities of opposite signs. This system will allow us to obtain multidimensional solitons and
light condensates with surface tension properties analogous to those of usual liquids.
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FIG. 1. Real (solid curve) and imaginary (dashed curve) parts
of the susceptibility � given by Eq. (2) for � � 30 MHz, �2 �
10�8�, �3 � �4 � 0:8�, �13 � �23 � 1:5�, �24 � �5�,
�c � �=2, as a function of j�pj

2 � j�j2jEpj2=4@2. Inset:
Schematic plot of the energy levels and optical couplings of
the four-level atomic system.
The applications of nonlinear optical media mostly rely
on the adequate dependence of their refractive indices on
the amplitude of light fields. It is well known that the figure
of merit of a suitable material for practical devices includes
a fast and strong response to the light field as well as low
losses [1], which has motivated an active search for optical
materials with the appropriate properties [2].

On the other hand, a significant breakthrough in quan-
tum optics has been the realization of giant optical non-
linearities in gases by means of atomic coherence and
interference [3]. A technique that has attracted much at-
tention is electromagnetically induced transparency (EIT)
[4–6], in which an opaque medium becomes transparent to
a probe laser beam by the addition of an appropriate
coupling laser beam. The adequate choice of an atomic
level scheme and driving fields can yield to controllable
nonlinearities with very interesting applications in the
design of nonlinear optical devices. This has been the basis
for many studies on the resonant enhancement of nonlinear
optical phenomena via EIT [7–13]. However, only a few of
these works have investigated the formation of transverse
solitons [12] and mostly considered the role played by the
giant Kerr nonlinearity.

In this Letter we study the optical properties of a system
where atomic coherence can be used to control the depen-
dence of the refractive index on the amplitude of the light
field. Many novel nonlinear optical phenomena beyond the
giant Kerr effect are described, the most interesting being
the obtention of the so-called liquid light condensates [14],
i.e., robust solitonic distributions of light with analogies to
ordinary fluid droplets.

We consider the propagation of a weak probe light field
of frequency !p in a medium composed of four-level
atoms and a coupling light field of frequency !c (see,
e.g., [12]). A scheme of our system is shown in the inset
of Fig. 1. In this kind of system, a coupling field of
frequency !c changes the level structure [15] and induces
transparency for a probe beam of frequency !p. A second
effect is the enhancement of the optical Kerr nonlinearity.
�2; �3; �4 denote the decay rates of the atomic states and
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�13;�23;�24 are light detunings. Direct electric-dipole
transitions between the two ground states j1i and j2i are
forbidden.

Paraxial propagation along z of a probe laser beam
through an optical medium, is given by
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kp � 2�=�p andEp are the wave number and amplitude of
the beam. The optical susceptibility � in the rotating wave
and adiabatic approximations for EIT in the presence of a
coupling beam Ec take the form [12]
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FIG. 2 (color online). Solutions of Eq. (4) for � � 0:2, 1.4,
and 1:7 �m�1 for our parameter set (values given in the text).
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where j�p;cj
2 � j�j2jEp;cj

2=4@2 are squared Rabi fre-
quencies and �2 � �23 � �13 � i�2, �3 � �13 � i�3,
�4 � �24 � �13 � �23 � i�4, and A � B�
j�cj

2j�pj
2=��2

3B�, with B � �2 � j�pj
2=�4 � j�cj

2=�3,
being �2, �3, and �4 the decay rates of the atomic states
and �13, �23, and �24 the light detunings. For our numeri-
cal examples to be presented later we choose an atomic
density � � 1014 cm�3, an electric-dipole moment � �
3� 10�29 Cm (for alkali atoms such as Rb or Ce, assum-
ing for simplicity �13 � �23 � �24 � �), �2 � 10�8�,
�3 � �4 � 0:8� (with � � 30 MHz), �13 � �23 � 1:5�,
�24 � �5�, �c � �=2, and �p � 800 nm.

From Eq. (1) we get the coefficients ��j� of the Taylor
expansion of the susceptibility � �

P
1
j�0 �

�2j�1�jEpj2j:

��1� � ��j�j2�2=��0@C�; (3a)
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C � �2�3 � j�cj
2, D � �3=�4 � 1.

In Fig. 1 we show the real and imaginary parts of the
susceptibility � as a function of the squared Rabi fre-
quency of the probe light j�pj

2 � j�j2jEpj
2=4@2, for our

parameter choice. As it can be appreciated from
Re����p�	 (see Fig. 1), the real part of the susceptibility
of the medium grows linearly with jEpj2 for low powers

(due to the effect of a positive ��3�R ) and decreases for high
powers (due to a negative ��5�R ), while the losses are com-
paratively small in this range. Thus, we have a balance of
diffraction plus self-focusing for low field amplitudes and
self-defocusing for larger amplitudes. This type of com-
petition is also found in media with the so-called nonline-
arity of cubic-quintic type, i.e., those with a refractive
index of the form n � n0 � n2jEj

2 � n4jEj
4. These non-

linearities have attracted a lot of theoretical attention re-
cently [14,16–20] because of their predicted ability, when
n4 < 0, to prevent collapse of laser beams for sufficiently
large powers, thus yielding to different stable two-
dimensional light distributions [16]. The robustness of
these light bullets has been recently connected with the
formation of a liquid light condensate with surface tension
properties similar to those of usual liquids [14,21]. It has
been shown recently [21] that the surface tension of the
light condensates grows linearly with the radius, as in the
case of usual liquid droplets. These media are able to
support stable vortex beams [17–19,22] and display inter-
esting nonlinear phenomena [20].

For our choice of parameters, using Eqs. (3) and
the relation n�Ep� ’ n0 � ��

�3�
R =2n0�jEpj2 �

1
2n0
���5�R �
02390
���3�R =2n0�
2	jEpj

4 � 
 
 
 , we obtain nR2 � 2:2713�
10�7 m2=V2, nR4 � �3:4390� 10�13 m4=V4, which are,
respectively, �1013 and �1022 larger than those measured
for usual nonlinear optical materials [23]. These facts
provide some analogies between our system and cubic-
quintic (CQ) media. However, the contribution of higher
order and dissipative terms will be relevant for us.

First we will construct stationary transverse self-trapped
solutions of Eq. (1) of the form: Ep�r; z� �  l�r�ei�zeil	,
where � is the propagation constant. For l � 0 the beam
host a vortex of topological charge l. To this end we set
�I � 0 and solve numerically the problem

�
d2

dr2 �
1

r
d
dr
�
l2

r2 � k
2
p�R� ‘� � 2kp�

�
 l � 0; (4)

with boundary conditions  0l�0� � 0 and  l�1� � 0.
This gives us stationary beam shapes corresponding to

different powers as a function of �. Let us first consider
beams with l � 0. In Fig. 2 we show the results for � �
0:2, 1.4, and 1:7 �m�1. Low values of � yield to light
distributions with quasi-Gaussian profiles. As � is incre-
mented, the spatial shapes become narrower, but still keep
a Gaussian shape. For larger values of �, the beam flux
grows rapidly and the peak intensity of the light distribu-
tion saturates due to the effect of a negative n4, yielding to
light distributions with almost super-Gaussian profiles.
Because of the giant nonlinear response, these powers
can be experimentally achieved by using mW continuous
lasers provided the sources are highly stabilized in fre-
quency (typically 1 MHz bandwidth). A warning is in
order: for our parameter combination, the probe beam
has a power smaller but close to that of the coupling
beam, thus a fully quantitative treatment should consider
a vector extension of Eq. (1) including the effect of the
probe beam on the coupling beam. Since this extension
makes the analysis even more complex, in this Letter we
restrict ourselves to the scalar model and the full vector
model will be the subject of future research.
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FIG. 3 (color online). Propagation of an eigenstate of Eq. (4)
with � � 1:5 �m�1 in as medium with the full complex sus-
ceptibility given by Eq. (2). (a)–(d) 3D plots of jEp�x; y; z�j2 for
z � 0; 100; 125, and 150 �m. (e) Beam width w�z�.
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FIG. 5 (color online). Coalescence of two eigenstates with
� � 1:65 �m�1 launched in parallel with the same phases.
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We have used the eigenstates of the nondissipative case
as input conditions for propagation in a medium with the
full complex susceptibility of Eq. (2) (i.e., including the
imaginary part of �). We observe that for � � 1:1 �m�1

the eigenstate keeps its shape while propagating in such a
medium. In this situation the amount of energy pumped
into the soliton and taken out by the linear and nonlinear
gain and dissipation, respectively, achieves an equilibrium
[24]. Eigenstates with �< 1:1 �m�1 tend to spread dur-
ing propagation since they do not achieve the critical power
for the formation of a soliton, while those with �>
1:1 �m�1 keep their peak amplitude and increase their
width during propagation as it can be seen in Fig. 3. In this
situation the energy available in the medium is responsible
for the broadening of the liquid light droplet in a similar
way to the process of growth of a fluid droplet in a super-
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FIG. 4 (color online). Evolution of an eigenstate with l � 1
and � � 1:5 �m�1 for several propagation distances. The gain
enlarges the radial size of the beam preserving the vortex.
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saturated atmosphere. This means that although small,
nonconservative effects play an important role in the
propagation of wave packets for this set of parameters.
We have found numerically with a very high accuracy that
the radius of the light droplet varies as R�z� � z3, which is
faster than typical fluid droplet growth phenomena [25] or
models similar to CQ ones such as the Ginzburg-Landau
equations [26]. In both cases the growth takes the form zq

with q < 1. Even pure diffractive propagation leads an
exponent q � 1, which is smaller than the one observed
in our system.

Next, we have constructed eigenstates of Eq. (4) with
l � 1. Eigenstates with � � 1:07 �m�1 tend to spread
during propagation. However, for �> 1:07 �m�1 the
beams reach a critical value of the energy [17] so that the
liquid light condensate is formed and the surface tension is
able to sustain the vortex within the beam. Thus, the effect
of gain is to enlarge the radial size of the beam without
destroying the vortex, as can be seen in Fig. 4. As the beam
propagates the width of the beam surrounding the vortex
increases while keeping the peak density constant, which
again resembles the growth of an incompressible fluid.
Note that the radial profiles from Fig. 4 are very similar
to those found in Ref. [22] in the study of the stability of
multiply charged two-dimensional vortices in cubic-
quintic media. It is remarkable that the maximum densities
in Figs. 2 and 4 are very similar.

To study the robustness of these solitons we have made a
series of numerical experiments with collisions of different
beams (we show results for l � 0). First we have launched
initially parallel beams in phase corresponding to eigen-
states with � � 1:65 �m�1. Their mutual effective inter-
action, as it happens with solitons of the 1D nonlinear
Schrödinger equation, is attractive and leads to their fusion
and subsequent transverse oscillations of the new bound
state as it can be seen in Fig. 5. In a different series of
numerical experiments we have studied the collisions of
the same beams launched initially with opposite phases as
m m mm
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FIG. 6 (color online). Collision of two hyper-Gaussian beams
launched with opposite phases, amplitudes A � 2000 V=m and
width w � 4 �m, separated by 3 �m and one of them slightly
displaced in the y axis. The initial angle is 0.25 rad.
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FIG. 7 (color online). Total reflection at a nonlinear-linear
interface of an eigenstate with � � 1:6 �m�1 and an incidence
angle of 0.01 rad, at z � 0; 6; 8, and 24 �m.
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shown in Fig. 6. As it can be seen, both beams survive the
collision behaving as light droplets, although slight trans-
verse oscillations of the beams are observed after the
collision by excitation of surface modes. Both phenomena
arise in fluid droplets collisions [27].

Finally, we have launched an eigenstate with � �
1:6 �m�1 with an incidence angle of 0.01 rad against
the frontier between a nonlinear and a linear material.
The results are shown in Fig. 7, where the breakup of the
beam into smaller droplets is observed analogously to
splashing fluid droplets [28].

In conclusion, we have shown that the adequate choice
of the parameters of a specific EIT scheme leads to a giant
response for both n2 and n4 (but different signs) and could
allow us to obtain stable two-dimensional liquid light
condensates with surface tension properties similar to
those of usual liquids. Our theoretical and computational
results could be the basis for real experiments in nonlinear
optics with continuous mW lasers showing this phase
transition and nice liquidlike properties of light.
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