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Aspects of the Confinement Mechanism in Coulomb-Gauge QCD
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Phenomenological consequences of the infrared singular, instantaneous part of the gluon propagator in
the Coulomb gauge are investigated. The corresponding quark Dyson-Schwinger equation is solved,
neglecting retardation and transverse gluons and regulating the resulting infrared singularities. While the
quark propagator vanishes as the infrared regulator goes to zero, the frequency integral over the quark
propagator stays finite and well defined. Solutions of the homogeneous Bethe-Salpeter equation for the
pseudoscalar and vector mesons as well as for scalar and axial-vector diquarks are obtained. In the limit of
a vanishing infrared regulator the diquark masses diverge, while meson properties and diquark radii
remain finite and well defined. These features are interpreted with respect to the resulting aspects of
confinement for colored quark-quark correlations.
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The substructure of the nucleon has been determined to
an enormous precision leaving no doubt that the parton
picture emerges from quarks and gluons, the elementary
fields of quantum chromodynamics (QCD). Although they
are the ‘‘elementary particles’’ of strong interactions,
quarks and gluons have never been detected outside had-
rons. This phenomenon is called confinement. Despite its
importance for particle physics and for an axiomatic ap-
proach to quantum field theory our understanding of con-
finement is far from being satisfactory.

In this Letter we concentrate on certain aspects of con-
finement for colored composite states. We start from the
commonly accepted Wilson criterion [1] and an inequality
between the gauge-invariant quark-antiquark potential
VW�R� and the color-Coulomb potential VC� ~x� [2]. The
latter quantity is the instantaneous part of the time-time
component of the gluon propagator in Coulomb gauge:
D00� ~x; t� / VC� ~x���t� � noninst. terms. In Ref. [2] it was
shown that if VW�R� is confining, i.e., if limR!1VW�R� !
1, then also jVC� ~x�j is confining. This was confirmed in an
SU�2� lattice calculation [3] where it was found that
�VC� ~x� rises linearly with R � j ~xj. However, the corre-
sponding string tension, �c, was extracted to be several
times the asymptotic one. (If the same holds for the physi-
cal case of three colors one infers

������
�c
p

� 600 . . . 750 MeV
from the generally used value

������
�c
p

� 440 MeV. Note,
however, that this increase is not sufficient to resolve the
problem of a too small value of the pion decay constant [4],
when only a confining potential is used and noninstanta-
neous interactions, in particular, transverse gluons, are
neglected.)

A well-suited formalism for the study of composite or
bound states of quarks is the Dyson-Schwinger–Bethe-
Salpeter approach [5]. While corresponding investigations
in Coulomb gauge, e.g., [6,7], predate those based on
model studies employing Landau-gauge QCD Green func-
tions, the latter have been much more numerous and the
corresponding studies explore a large number of hadron
observables, see, e.g., Refs. [8–13] and references therein.
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Note that in Landau-gauge QCD the structure of the quark-
gluon vertex [14] is an issue of current debate due to its
importance for the quark propagator [15].

In this Letter we report on a study of mesons and two-
quark composite states employing the color-Coulomb po-
tential VC� ~x� and thus some of the basic features of
Coulomb-gauge QCD. We build on investigations of the
gluon propagator [16] and the dynamical breaking of chiral
symmetry [4,7,17] in Green-function approaches and re-
lated results of lattice calculations [3,18]. Our focus is the
realization of confinement for quarks and two-quark com-
posite states (‘‘diquarks’’).

First, we briefly review the quark Dyson-Schwinger
(gap) and bound-state Bethe-Salpeter equations. All calcu-
lations are performed in Minkowski space. The QCD gap
equation determines the quark self-energy due to gluons. It
is of the form

iS�1�p� � 6p�m���p�; (1)

where S�p� is the renormalized dressed quark propagator,
m the current-quark mass, and ��p� is the quark self-
energy. A quark-antiquark bound state is described by the
Bethe-Salpeter equation (BSE), which in its homogeneous
form is written as (for simplicity we neglect Dirac, flavor,
and color indices)

��P; q� �
Z
d4kK�q; k; P�S�k����P; k�S�k��; (2)

where P and q are the quark-antiquark pair’s total and
relative four-momenta, ��P; q� is the bound state’s
Bethe-Salpeter amplitude (BSA), k� � k� P=2 are the
individual quark- and antiquark-momenta, and K�q; k; P�
is the quark-antiquark scattering kernel. Note that the result
of Eq. (1) appears as input in Eq. (2).

The quark self-energy in Eq. (1) is a functional of the
quark and gluon propagators and the quark-gluon vertex; a
self-consistent solution would require us to simultaneously
solve the Dyson-Schwinger equations for these functions
and the quark-antiquark scattering kernel from Eq. (2) as
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well. However, these equations again involve higher Green
functions and therefore a truncation of this infinite coupled
system of integral equations is necessary.

In the present study we use Coulomb gauge together
with an instantaneous approximation and neglect the ef-
fects of transverse gluons. These approximations simplify
the technical challenges involved in concrete calculations.
On the other hand, some component of the physics con-
tained in the system is lost. The results are qualitatively, but
not quantitatively significant. We therefore refrain from
using physical dimensions, but instead present the quanti-
ties in all graphs in appropriate units of the Coulomb string
tension �c. The reason for the qualitative reliability of the
calculations is that the underlying symmetries of the theory
are incorporated in the model via Slavnov-Taylor or Ward-
Takahashi identities. One important example is the axial-
vector Ward-Takahashi identity, which is used to ensure
that the kernels of the gap and Bethe-Salpeter equations for
pseudoscalar states are related in such a way that chiral
symmetry and its dynamical breaking are respected by the
truncation. Here, corresponding to the rainbow approxima-
tion in the quark Dyson-Schwinger equation, we employ
the ladder approximation in the qq scattering kernel in the
BSE. In particular, this leads to the correct behavior of the
pion mass as a function of the current-quark mass in the
chiral limit. This behavior is shown in Fig. 1. (Note: The
results in all figures except Fig. 1 are presented for the
chiral limit, i.e., zero current-quark mass. The results for
finite current-quark mass are analogous.) In this way one
can reliably make qualitative statements about hadrons and
their properties; however, it is still important to investigate
the contributions from retardation effects and transverse
gluons, and such efforts are currently made.

In our model the quark self-energy ��p� in Eq. (1) takes
the form

��p� � Cf6�
Z d4q

�2��4
VC� ~k��0S�q��0; (3)

where Cf � �N2
c � 1�=�2Nc� � 4=3 and ~k � ~p� ~q. Our
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FIG. 1. The pion and rho masses as functions of the current-
quark mass in the limit �IR ! 0. All quantities are given in
appropriate units of

������
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p

, �c being the Coulomb string tension
(see text).
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particular choice for the color-Coulomb-potential VC� ~k�
will be given in Eq. (8). In the following we will use p to
denote p � j ~pj. The q0 integration in Eq. (3) can be
performed easily. One makes the ansatz S�1�p� :�
�i��0p0 � ~� 	 ~pC�p� � B�p�
 and obtains two coupled
integral equations for the functions B�p� and C�p�

B�p� � m�
1

2�2

Z
d3qVC�k�

M�q�
~!�q�

(4)

C�p� � 1�
1

2�2

Z
d3qVC�k�p̂ 	 q̂

q
p ~!�q�

; (5)

where p̂ � ~p=p, m is the current-quark mass, ~!�p�: ��������������������������
M2�p� � p2

p
, and M�q� :� B�q�=C�q� is the quark

‘‘mass function.’’ Its infrared behavior is a result of dy-
namical chiral symmetry breaking and can be used to
define a constituent-quark mass; we have plotted the
mass function M as a function of q2 in Fig. 2 (details of
this figure will be specified below).

The same approximations and conventions are used in
the BSE. For pseudoscalar mesons in our model (and
correspondingly scalar diquarks) the BSA can be charac-
terized in terms of two scalar functions h�p� and g�p�,
which essentially are the coefficients of the pseudoscalar
and axial-vector structures in the BSA. For details, see
Ref. [19]. The BSE, Eq. (2), in terms of h�p� and g�p� in
our model becomes

h�p�!�p� �
1

2�2

Z
d3qVC�k�

�
h�q� �

m2
�

4!�q�
g�q�

�
; (6)

g�p��!�p� �
m2
�

4!�p�

 � h�p� �

1

2�2

Z
d3qVC�k�

�

�
M�p�M�q� � ~p 	 ~q

~!�p� ~!�q�

�
g�q�;

(7)

where m� is the bound state’s (e.g., the pion’s) yet un-
known mass and !�p� � C�p� ~!�p�.
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FIG. 2. The quark mass function M�q2� for four values of the
infrared regulator �IR in the chiral limit m � 0. All quantities
are given in appropriate units of
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FIG. 3. The masses of the � as well as the scalar (SD) and
axial-vector (AD) diquarks as functions of the infrared regulator
�IR in the chiral limit. The mass of the � is identically zero for
all values of �IR and therefore not shown in the graph. All
quantities are given in appropriate units of
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p

.
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FIG. 4. Pion Bethe-Salpeter amplitude components g and h as
functions of the infrared regulator �IR. For convenience, the
amplitudes are normalized such that h�0� � 1. All quantities are
given in appropriate units of
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FIG. 5. Same as Fig. 4 for the scalar diquark.
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For vector mesons (and correspondingly axial-vector
diquarks) the BSA has four linearly independent ampli-
tudes. The construction of the four coupled integral equa-
tions corresponding to the BSE is analogous to the
pseudoscalar case.

The Coulomb-gluon part VC of the interaction in
Eqs. (4)–(6) is chosen to be

VC�k� �
�c
�k2�2

; (8)

where �c is the Coulomb string tension. Obviously, VC�k�
is infrared singular. It is regulated by a parameter �IR such
that the momentum dependence is modified to

VC�k� �
�c
�k2�2

!
�c

�k2 ��2
IR�

2 : (9)

In this fashion all quantities and observables become �IR

dependent and one obtains the final result for some f��IR�
by taking the limit f � lim�IR!0f��IR�. This is illustrated
for the quark mass function in Fig. 2: M�p2� is plotted for
different values of �IR and it is clear that the curves
converge onto a final result for �IR ! 0.

In order to check the UV behavior one can use a
Richardson potential [20], which has the momentum de-
pendence VC�k� � 1=�k2 ln�1� k2=�2�
. The advantage of
our choice for VC is that the angular integration required to
solve Eqs. (4) and (5) can be performed analytically. We
have checked that the qualitative results presented in this
Letter can be reproduced with the Richardson potential.
Details of this approach and its UV renormalization will be
published elsewhere.

The homogeneous BSE in Eq. (2) is solved by introduc-
ing an eigenvalue ��P2 � M2� with M the bound-state
mass. One then finds M such that � � 1 (for mesons)
and � � 2 (for diquarks). For details, see, e.g., [12].

The curve for ��P2� gets less inclined with smaller
values of the infrared regulator �IR, and its intersection
02200
point with � � 1 stabilizes in the limit �IR ! 0. As a
consequence, while the meson mass is stable, the mass
eigenvalue for the corresponding diquark state [corre-
sponding to ��M� � 2] increases like 1=�IR, ultimately
completely removing these states from the physical spec-
trum. We have illustrated these effects in Fig. 3 for values
of 10�4  �IR  10�2.

Note: for Nc � 2 diquarks correspond to baryons. In
particular, in ladder approximation the respective color
factors for meson and baryon BSEs are identical.
Therefore, the properties of the scalar (axial-vector)
baryon are identical to those of the pion (% meson). For
Nc � 3 the ratio of quark-quark to quark-antiquark color
factors increases like Nc � 1; this means that the argument
given above is also valid in the large-Nc limit.

We studied the BSAs as�IR ! 0: the results for g and h
(6) are presented in Figs. 4 and 5 for the pion and scalar
diquark, respectively. For convenience, the normalization
of the amplitudes has been chosen such that h�0� � 1. We
note, however, that IR cancellations appearing in the pion
case lead to a stable h as well as ratio of g=h, which is not
the case (as one would naively expect) in the diquark case:
there g=h��IR ! 0 and h� 1=

��������
�IR
p

. Still, one can in-
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vestigate the charge radii for both meson and diquark states
by requesting that the electromagnetic form factor at the
origin yields the bound-state charge, which gives finite
results in the limit �IR ! 0. Plots of the pion and scalar
diquark charge radii are shown in Fig. 6. The results for
vector-meson and axial-vector-diquark amplitudes are
analogous.

We have performed a study of pseudoscalar- and vector-
meson states and their corresponding diquark partners in a
simple model of Coulomb-gauge QCD in the context of
Dyson-Schwinger equations, which allows for obtaining
reliable qualitative information about hadrons. The infra-
red singularities in the integrands are regulated by the scale
�IR such that final results are obtained in the limit �IR !
0. In this limit the masses and charge radii for the mesons
are stable; for their diquark partners only the masses di-
verge like 1=�IR, while the charge radii do not. Thus the
diquarks are removed from the physical spectrum reflect-
ing confinement of colored quark-quark correlations.
Nevertheless they possess a well-defined size. This adds
to the motivation of nucleon studies in a covariant quark-
diquark picture [10,11].
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