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Single-File Diffusion on a Periodic Substrate
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An assembly of ‘‘nonpassing’’ particles diffusing on a one-dimensional periodic substrate is shown to
undergo single-file diffusion for both noiseless (ballistic) and stochastic dynamics. The dependence of the
corresponding diffusion coefficients on the density and temperature of the particles and on the substrate
parameters is determined by means of numerical simulations and analytically interpreted within the
formalism of standard Brownian motion.
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As the direct observation of cellular flows and the op-
eration of biology inspired nanodevices are becoming ex-
perimentally more and more accessible, understanding
particle diffusion in a 1D system has been recognized as
a key issue in transport control [1]. When pumping a dilute
mixture of interacting particles through a narrow channel,
either by applying external (dc or ac) gradients or by
rectifying ambient fluctuations, the efficiency of the trans-
port mechanism is largely influenced by the diffusion of
the pumped particles [1,2].

Most literature on the diffusion of suspended particles
rests upon many-body techniques borrowed from well
established theories, like hydrodynamics and other kinetic
theories [3]. An alternate approach to this problem consists
in assuming that all particles are subjected to spatially
uncorrelated thermal fluctuations at the appropriate tem-
perature so that they can be treated as independent
Brownian particles (as long as hydrodynamic interactions
are negligible [3,4]). Formalisms based on the Langevin
equation and on the Fokker-Planck equation can then be
developed to compute numerically and analytically the
relevant particle currents and their dispersion [5].

In this context the characterization of the interparticle
interaction plays a central role. If the particles are able to
pass one another, the interparticle collisions are respon-
sible for a number of rectification mechanisms [6–8],
including gating, harmonic mixing, and Stokes’ drag. All
of this is in addition to the rectification effects possibly
induced by the spatiotemporal asymmetries in the particle
coupling to their environment (ratchet effect [9]).
Markedly different are the so-called ‘‘nonpassing’’ flow
geometries: suppressing particle hopping makes the sub-
diffusive nature of a single-file system emerge in the case
of both elastic [10] and inelastic collisions [11].

Here we consider a file of N unit-mass particles moving
with preassigned dynamics along a segment of length L; if
the particle-particle interaction is hard core (with zero
radius), the elastic collisions between neighboring particles
are nonpassing—meaning that the particles can be labeled
according to an ordered sequence. This implies that the file
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is geometrically constrained and the long-time diffusion of
an individual particle strongly suppressed [12–14].

In the present Letter we characterize the diffusive mo-
tion of a single file drifting on a periodic substrate subject
to either ballistic or stochastic dynamics. Remarkable, in
our view, is the case of stochastic single files constrained
on a periodic substrate. In the absence of geometric con-
straints, dilute mixtures of suspended interacting particles
are known to exhibit normal diffusion, no matter what the
substrate [15]; when driven by an external force their
diffusion constant gets enhanced, the excess diffusion sig-
naling particle depinning from the substrate or cluster
fragmentation [16,17]. In contrast, an assembly of non-
passing particles is shown here to exhibit anomalous dif-
fusion with exponent 1

2 independent of the substrate. The
dependence of the diffusion coefficients of a single file on
both the file and the substrate parameters is quantitatively
reproduced by simple analytical laws.

The diffusion of a free single file (SF), i.e., in the
absence of a substrate, has been investigated in detail
[12–14,18]. In the thermodynamic limit (L;N ! 1 with
constant density � � N=L) the mean square displacement
of each file particle can be written as

h�x2�t�i � hj�x�t�ji=� (1)

with hj�x�t�ji denoting the absolute mean displacement of
a free particle. For a ballistic single file (BSF), clearly
hj�x�t�ji � hjvjit, where h� � �i is the ensemble average
taken over the distribution of the initial velocities, and
therefore

h�x2�t�i � hjvjit=�: (2)

A BSF particle diffuses apparently like a Brownian particle
with normal diffusion coefficient D � hjvji=�2��. For a
stochastic single file (SSF) of Brownian particles with
damping constant � at temperature T, the equality
hj�x�t�ji �

�����������������
4D0t=�

p
yields the anomalous diffusion law

h�x2�t�i � 2F
��
t
p
=�; (3)
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FIG. 1 (color online). Diffusion of a BSF in the periodic
potential (4): (a) diffusion coefficient D vs � for � � 10�3

and different energies E�. The solid curves represent the equality
2D � hj �vji=� introduced in Eq. (5); note that the BSF diffusion
law sets in only for relatively large running times, i.e.,
t��hj �vji� 	 1, as shown in (c) and (d); (b) h�x2�t�i vs t for � �
0:6 and different SF initializations. Solid curves: all �N running
particles are given the same energy E�; dashed curves: the initial
energy of the running particles is distributed according to a
Gaussian function with mean E� and variance �E� � 2d�=3,
while the energy of the trapped particles is set to zero.
Choosing (random) positive values for the energies of the
trapped particles does not affect the long-time diffusion process
(not shown); (c) h�x2�t�i vs t for � � 0:6, E� � 10, and differ-
ent densities �. The t2 and the t slopes (dashed lines) have been
drawn for reader’s convenience; (d) numerical test of the diffu-
sion law (5) (see text) for � � 0:6, � � 10�3, and different
values of E�. The factor v� � j �v�E��j has been computed as in
Ref. [5], Eq. (11.102). Other simulation parameters are L �
1:5
 106, l � 103, d � 5, and all particles have unit mass. The
mean square displacement h�x2�t�i of a BSF is defined as 1

N 
PN
i�1�xi�t� � xi�0��

2, where xi is the coordinate of the ith
particle. To improve our statistics, averages have been taken
over 5 independent realizations.
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where the mobility factor F �
�������������
D0=�

p
is related to the

single particle diffusion constant D0 � kT=�, and h� � �i
involves an additional stochastic average. The normal (2)
and the subdiffusive (or SF) regimes (3) have been con-
firmed both numerically [14,19] and experimentally
[20,21]; the crossover between these two regimes has
also been investigated [10].

In the following we address the case of a SF diffusing on
a sinusoidal substrate with potential:

V�x� � d
�
1� cos

2�x
l

�
: (4)

Extensive numerical simulations have been carried out for
both BSF and SSF. The first to investigate this problem was
Percus [22], who developed a grand potential approach to
the equilibrium statistical mechanics of a SF of elastic
particles with diameter a (for an extension of Percus’
formalism to an inelastic SF see Ref. [23]). Note that this
variation of the SF model rises quite naturally in connec-
tion with most quasi-1D systems where the particles are
represented by spheres of diameter a moving along a
narrow channel with average cross section �, such that
�< a; the walls, say, of a nanotube or a zeolite pore are
more likely to be periodically corrugated than straight [18].

Ballistic single file.—In the simulations of Fig. 1 each
particle is assigned random initial position and velocity;
upon each elastic collision it switches velocity with either
neighbor without altering the file labeling. Moreover, we
expect that adding the substrate potential (4) has no impact
on the normal diffusion law (2); only the relevant diffusion
coefficient ought to be reduced [15]. Let us denote by �,
0 � � � 1, the fraction of particles with total energy E
larger than the potential barrier 2d. Our simulations clearly
show that h�x2�t�i obeys asymptotically law (2) with D
proportional to � [Fig. 1(a)].

Here, the �N running particles with E> 2dwere picked
at random and so was their position on the substrate; their
energy was set equal to one value E�, the same for all,
while the energy of the �1� ��N particles trapped in the
potential wells was set to zero; the additional constraint
hvi � 0 on the velocity of the file center of mass was
imposed for convenience. Note that assigning the en-
ergy Ei to the ith particle at random, according to a
broader distribution g�Ei� with hEii � �E�, turns out to
be statistically equivalent [Fig. 1(b)]. Moreover, the dif-
fusion coefficient is independent of the substrate period l
(not shown) and inverse proportional to the density �
[Fig. 1(c)].

The numerical results of Fig. 1 can be summarized by
rewriting the diffusion law (2) for a BSF as

h�x2�t�i � hj �vjit=�; (5)

where hj �vji is the ensemble average of the particle velocity
taken over one potential period [5]. For our simple initial-
ization condition, i.e., g�Ei� � �1� ����Ei� � ���Ei �
02060
E��, from the identity hj �vji � �j �v�E��j it follows imme-
diately that D � �j �v�E��j=�2��. In Fig. 1(d) our predic-
tion has been tested by plotting the ratio h�x2�t�i=j �v�E��j
versus t for different E� and constant � and �: all curves
tend to collapse on one asymptotic scaling function
�t=�2��.

The diffusion law (5) can be interpreted as follows. Over
time, each SF particle visits all N individual (i.e., collision-
less) particle trajectories uniquely determined by the initial
conditions. One such trajectory with energy E can be either
open or closed, but it sure is periodic—the average veloc-
ity j �v�E�j is zero for the trapped particles and grows from
�4=��

���
d
p

up to
������
2E
p

with E larger than 2d [5]. The resi-
dence time � of a tagged particle in any trajectory is the
time interval between two subsequent collisions, that is, on
average, � � ��hj �vji��1. On regarding such N trajectories
as a statistical ensemble of distinct microscopic states, we
conclude that a tagged particle behaves like a random
1-2
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FIG. 2 (color online). Diffusion of a SSF in the periodic
potential (4): (a) h�x2�t�i vs t for kT � 1, d � 1, and different
�; (b) h�x2�t�i vs t for kT � 1, � � 5, and different d. The t and
the t1=2 slopes (dashed lines) have been drawn for the reader’s
convenience; (c) the mobility factor F vs d=kT for � � 5 and
d � 1 (circles) and kT � 1 (squares). The solid curve in (c)
represents the law F �

�������������
D0=�

p
with D0 given by Eq. (6) with

A � 0. Moreover, our simulation confirms that h�x2�t�i is in-
verse proportional to � in the range �102; 1� (not shown). Other
simulation parameters are N � 3
 103, l � 2�, L � 3
 103l,
and all particles have unit mass. Here, the definition of the SSF
mean square displacement is h�x2�t�i � 1

N

PN
i�1h�xi�t� �

xi�0��
2is, with h� � �is denoting the average taken over 5 indepen-

dent stochastic realizations. Note that in (b) h�x2�t�i for d	 kT
approaches first hx2�0�i � �2=3 [uniform xi�0� distribution] on
the short time scale �=d, before the diffusive hopping dynamics
sets in.
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walker that executes jumps of length 
1=� sidewise at
average time intervals �; hence, Einstein’s diffusion con-
stant D � hj �vji=2� in Eq. (5).

The interpretation of the identity D � �j �v�E��j=�2�� is
quite intriguing. Consider our simulation model, where Ei
assumes only two values, 0 and E�, with probability 1� �
and �, respectively: how can an experimenter determine
the SF density? On measuring D, as it was originally
proposed by Einstein, one extracts an estimate for �=�.
However, this ratio can be kept constant by increasing �
and simultaneously lowering d (i.e., raising �). Moreover,
note that �=� can be regarded as the particle density of a
free SF confined to the length �L covered on average by
the running particles. This is an effect of the potential wells
trapping a fraction 1� � of the particles with zero mean
velocity (closed orbits): the kinetic energy of the trapped
particles, no matter what the particle initialization, does not
contribute to the overall BSF diffusion.

Stochastic single file.—The simulation of a SSF in the
sinusoidal potential (4) requires assigning each particle an
independent Brownian dynamics determined by a viscous
force �� _xi and a random force �i�t�. Here, xi�t� denotes
the coordinate of the ith particle; �i�t� represents a
Gaussian stochastic process with zero mean and autocor-
relation function h�i�t��j�0�i � 2�kT�i;j��t�. Such a cou-
pling of the diffusing particles with their environment
ensures that the SF eventually approaches an equilibrium
state with temperature T, both in the underdamped, ��
�2�=l�

���
d
p

, and in the overdamped regime, �	 �2�=l�
���
d
p

.
The outcome of our numerics led us to conclude that the

periodic substrate potential V�x� does not invalidate the
SSF diffusion law (3), although the dependence of the
mobility factor F on the system parameters becomes
more complicated. In Figs. 2(a)–2(c) we characterize F
as a function of �, d, and T. The identity F �

�������������
D0=�

p
assumed in Eq. (3) for V�x� � 0 seems to apply here, too.
In 2(a) the rescaled curves �1=2h�x2�t�i versus t overlap
asymptotically for any damping regime. The temperature
dependence of the factor F is more interesting. In the
regime of moderate-to-large damping the diffusive dynam-
ics of a single Brownian particle can be modeled as a
renewal process [17,24] with modified diffusion constant

D0 �
l2kT
�

R
l
0 dxI

2
��x�I��x�

�
R
l
0 dxI��x��

3
; (6)

where I
�x� �
R
l
0 dy expf�
V�x� � V�x� y� � yA�=kTg

with A � 0. This prediction is known to get more and
more accurate for large � [16] and increasingly high
activation-to-thermal energy ratios d=T [17]. In view of
Eq. (6) the rescaled mobility

���������
�=d

p
F would be a function

of d=T, alone, in good agreement with the simulation
results displayed in 2(c). Note that our analytical prediction
based on Cox’s theory (solid curve) fits quantitatively well
the numerical data for a wide parameter range.
02060
Such a close comparison between theory and simulation
encouraged us to explore the case of file diffusion in the
presence of a nonvanishing external tilt A; namely, we now
assume that all file particles are subjected to an additional
constant force A pointing, say, to the right (A � 0). [Of
course, because of the absence of a damping term, a driven
BSF is out of the question.] The diffusion of a single
Brownian particle drifting down a tilted washboard poten-
tial is known to exhibit enhanced normal diffusion [16]
with diffusion constant (6) [17]. Extensive simulation of a
driven SSF yielded the numerical data reported in Fig. 3. In
both damping regimes the kinetic mobility of the file,
defined as 	 � h _xi=A, is expected to coincide with the
mobility of a single particle under the same dynamical
conditions [13] (Fig. 3, inset).
1-3



1 2 3 4
d

0

1

2

3

2F 0 1 2 3

A/  d

1

ηµ

0.5
2.0

η  =
A=1

A=0

FIG. 3 (color online). Diffusion of a SSF in the periodic
potential (4): the mobility factor F vs d for kT � 0:3, � � 5,
and A � 0 (squares) and A � 1 (circles). The solid curves
represent the law F �

�������������
D0=�

p
with D0 given by Eq. (6). Other

simulation details are as in Fig. 2. Inset: the kinetic mobility,
	 � h _xi=A, vs A=

���
d
p

for � � 0:5 (circles) and � � 2 (squares)
at kT � 0:1. The fitting curves are the corresponding analytical
predictions for a single Brownian particle based, respectively, on
Eqs. (11.194) and (11.50) of Ref. [5].
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More remarkably, the SF diffusion regime persists,
though with an A-dependent mobility factor; when plotted
versus d, F attains a maximum enhancement for d * A,
i.e., in coincidence with the (noise-assisted) depinning of
the file from its sinusoidal substrate [16]. Again, the iden-
tity F �

�������������
D0=�

p
combined with Cox’s formula (6) pro-

vides an excellent fit of our simulation data for large �. Of
course, the mobility enhancement at depinning can be
revealed also by plotting F versus A at constant d.

In conclusion, we have generalized the most refined SF
diffusion laws (2) and (3) to BSF and SSF on periodic
substrates. The diffusion coefficients D and F, respec-
tively, can be modified analytically to closely reproduce
the numerical results from stochastic molecular dynamics
simulations. Most remarkably, we extended our analysis to
the case of driven SSF: a marked enhancement of the
mobility factor F versus A at different T, can allow an
experimentalist to determine the file depinning threshold,
i.e., the substrate amplitude, with good accuracy. Finally,
the SSF diffusion properties illustrated here are expected to
apply also when the stochastic particle dynamics is re-
placed by a chaotic one, as is the case of the narrow
corrugated channels investigated in Ref. [18].
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