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Remote Preparation of Arbitrary Time-Encoded Single-Photon Ebits
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We propose and experimentally verify a novel method for the remote preparation of entangled bits
(ebits) made of a single photon coherently delocalized in two well-separated temporal modes. The
proposed scheme represents a remotely tunable source for tailoring arbitrary ebits, whether maximally or
nonmaximally entangled, which is highly desirable for applications in quantum information technology.
The remotely prepared ebit is studied by performing homodyne tomography with an ultrafast balanced
homodyne detection scheme recently developed in our laboratory.
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FIG. 1 (color online). Schematic representation of the experi-
mental setup. 50–50 is a 3 dB fiber coupler, HT a high-
transmission beam splitter, and M are mirrors. See text for
further details.
Entanglement, nonlocal correlations, indistinguishable
alternatives are historically among the most intriguing and
appealing topics of quantum mechanics. Besides their
relevance in fundamental physics [1], these phenomena
have attracted much attention due to their usefulness in
quantum information technology [2]. Extravagant but
promising protocols such as quantum teleportation, quan-
tum cryptography, and quantum computation have been
proposed and experimentally verified (see, e.g., [2], and
references therein). All these schemes were originally
based on two-photon entanglement. Recently, increasing
attention has been given to a new quantum information
perspective: the carriers of quantum information are no
longer the photons, but rather the field modes ‘‘carrying’’
them. Based on this idea, two different approaches have
been followed. The first one exploits the entanglement in
momentum generated when a single photon impinges on a
beam splitter and is characterized by the state �j1iaj0ib �
�j0iaj1ib, where a and b denote two distinct spatial modes
and � and � are complex amplitudes such that j�j2 �
j�j2 � 1 (see, e.g., [3,4], and references therein). The
second and more recent road has been traced by Gisin’s
group [5] on the line of Franson’s approach [6], and leads
to two-photon systems entangled in ultrashort copropagat-
ing temporal modes (or ‘‘time bins’’) [7].

In this Letter, we propose the first remotely tunable
source of arbitrary single-photon entangled states (ebits)
in the time domain and experimentally demonstrate its
working principle. We start from the spontaneous para-
metric down conversion (SPDC) signal-idler pairs [8] gen-
erated by a train of phase-locked pump pulses [5,9] and
generate indistinguishability between pairs of consecutive
nonoverlapping temporal modes propagating in the idler
channel; this enables us to remotely delocalize the twin
signal photon between two identical and well-separated
time bins, thus generating the single-photon temporal
ebit: �j1�n�ij0�n�1�i � �j0�n�ij1�n�1�i, where n denotes the
temporal mode associated with the nth pump pulse. Both
maximally and nonmaximally entangled single-photon
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states, with any relative phase, can be produced by per-
forming simple and reversible operations in the remote
idler channel. The proposed scheme may find immediate
application in quantum information technology; single-
photon ebits have been proven to enable linear optics
quantum teleportation [3,10] and play a central role in
linear optics quantum computation [4,11]. Furthermore,
time-bin entanglement has been proven suitable for long
distance applications [10,12], where the insensitivity to
both depolarization and polarization fluctuations becomes
a strong requirement. In addition, since the carriers of
entanglement are naturally separated (i.e., no further opti-
cal element is required) and undergo the same losses,
entanglement in time is less sensitive to losses and easier
to purify [13].

The experimental setup is pictured in Fig. 1. The 1.5 ps
pulses at 786 nm from a mode-locked Ti:Sapphire laser at a
repetition rate of 82 MHz are frequency doubled in a LBO
crystal. The resulting pulse train impinges on a nonlinear
BBO crystal cut for degenerate (�s � �i � �p=2) non-
collinear type-I SPDC; signal-idler photon pairs centered
at 786 nm are thus generated in two distinct spatial modes.
A single-mode fiber and a pair of etalon interference filters
(F) are employed for spatial and spectral filtering of the
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idler beam before its entrance in a fiber-coupled piezocon-
trolled (PZT) Michelson interferometer; a single-photon
detector (D1) is inserted at the exit port of the interferome-
ter. The signal beam propagates in free space before being
mixed at a 50–50 beam splitter (BS) with a local oscillator
(LO) for high-frequency time-domain balanced homodyne
detection (HD) [14,15]. Spatial and spectral filtering of the
idler mode guarantees the conditional projection of the
signal photons into a single-photon pure state [16–18].
On the other hand, the Michelson interferometer generates
indistinguishability between two consecutive temporal
modes propagating in the idler channel: an idler photon
detected by D1 may have been generated by either the Nth
or the �N � 1�th pump pulse, provided that the time delay
(T) between the short and long arms of the interferometer
is chosen to be approximately equal to the time separation
between two consecutive pump pulses (Tp � 12:3 ns).
Notice that the bandpass of the spectral filter in the idler
arm (�i � 50 GHz) is wide enough so that no first order
interference occurs (�i � �=Tp).

Based on a standard quantum mechanical calculation,
we find that the combination of indistinguishability and
tight filtering in the idler channel allows the conditional
remote preparation, in the signal channel, of the temporally
delocalized single-photon ebit:

j��i
s i �

1
���

2
p �j1�n�; 0�n�1�i � e�i�i j0�n�; 1�n�1�i�; (1)

with �i � �p�Tp � T=2�. Interestingly, the relative phase
�i characterizing the remotely prepared ebit is defined not
only by the phase difference introduced by the Michelson
interferometer (’int � �iT), but also by the relative phase
between consecutive pump pulses (’pump � �pTp). The
result of Eq. (1) represents the temporal counterpart of the
spatially delocalized single photon produced at the output
ports of a beam splitter; this case has been studied experi-
mentally by Babichev et al. [19]. However, different from
Ref. [19], the entangled state of Eq. (1) has been prepared
remotely, without performing any manipulation on the
signal photons. It is the interferometer in the idler arm
which generates indistinguishability between two consecu-
tive nonoverlapping temporal modes; this indistinguish-
ability, together with the coherence of both pump beam
and SPDC process, gives rise, in the signal channel, to the
coherent superposition of two previously independent and
still temporally separated time bins. An important advan-
tage of such a remote state preparation scheme is the
possibility of generating both maximally and nonmaxi-
mally single-photon entangled states, with any relative
phase �i, by performing simple and reversible operations
in the idler arm (or on the train of pump pulses). For
instance, two of the four Bell states, namely, j��s i �

1
��

2
p �

�j1�n�; 0�n�1�i � j0�n�; 1�n�1�i�, can be easily generated by
manipulating the interferometer. Furthermore, the proba-
bility amplitudes characterizing the delocalized single pho-
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ton may be continuously varied by simply introducing
controllable losses in one arm of the interferometer; this
has the only effect of lowering the production rate but does
not introduce any impurity in the state generated in the
signal channel.

The expected two-mode Wigner function [20] for the
delocalized single photon of Eq. (1) is given by

W�i�x1; y1; x2; y2� �
1
2	8W

�i
10 �x1; y1; x2; y2�

�W1�x1; y1�W0�x2; y2�

�W0�x1; y1�W1�x2; y2�
; (2)

where W1�x; y� �
2
� e
�2x2

e�2y2
�4x2 � 4y2 � 1� and

W0�x; y� �
2
� e
�2x2

e�2y2
are the single-mode Wigner

functions associated with a single-photon Fock state and
with the vacuum, respectively; on the other hand,
W�i

10 �x1; y1; x2; y2� is a nonfactorable 4D function which
couples the quadratures of two consecutive nonoverlap-
ping signal temporal modes:

W�i
10 �x1; y1; x2; y2� � W0�x1; y1�W0�x2; y2��x1x

�i
2 � y1y

�i
2 �;

(3)

where x�i
2 � x2 cos�i � y2 sin�i and y�i

2 � x2 sin�i �
y2 cos�i. Then, the Wigner function associated with the
delocalized signal photon contains information about the
characteristic phase �i introduced through the idler arm.
Also notice that, by introducing the phase-dependent cor-
relation quadratures x�i

� � �x1 � x
�i
2 �=

���

2
p

and y�i
� � �y1 �

y�i
2 �=

���

2
p

, the Wigner function of Eq. (2) factors:

W�x�i
� ; y

�i
� ; x�i

� ; y
�i
� � � W1�x

�i
� ; y

�i
� �W0�x

�i
� ; y

�i
� �: (4)

This result explicitly indicates that the delocalized single
photon cannot be described in terms of the quadratures
associated with neither one of the two distant temporal
modes (1 and 2), separately; however, the single photon is
well defined in the phase space �x�i

� ; y
�i
� �, while the vacuum

is defined in the phase space �x�i
� ; y�i

� �. Thus, the 4D
Wigner function reproduces the correlations remotely gen-
erated between pairs of well-separated temporal modes in
the signal arm.

We have experimentally verified the correctness of the
above predictions by performing balanced homodyne to-
mography and reconstructing both the density matrix and
the Wigner function of the ebit remotely prepared in the
signal channel. The density matrix has been reconstructed
directly from the homodyne data by employing the method
developed by D’Ariano et al. [21]; its elements have then
been used to reconstruct the Wigner function (for more
details, see our previous works [15,22]).

In order to reconstruct the two-mode 4D Wigner func-
tion of Eq. (2), one would normally need to measure the
joint marginal distribution of the quadratures X1��1� �
x1 cos�1 � y1 sin�1 and X2��2� � x2 cos�2 � y2 sin�2,
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while varying the phases �1 and �2 of two LO pulses
spatially and temporally matched (i.e., synchronized) to
the modes 1 and 2, respectively. However, the particular
state investigated here is invariant with respect to the
global phase, and only the relative phase �� � �1 � �2

needs to be controlled in the experiment [19,20].
Moreover, the joint marginal distribution is invariant under
interchange of �i and ��. We exploited this property in
order to overcome the difficulty connected to the genera-
tion of a pair of phase-controllable LO pulses out of the
train coming from the laser. Rather than varying the rela-
tive LO phase, one may keep �� fixed (by just using any
two consecutive pulses directly from the mode-locked
train) and vary the phase �i by means of the interferome-
ter. Although what we actually do in this case is to measure
fixed quadratures on the two modes for a varying quantum
state j��i

s i, it is immediate to show that this is equivalent to
performing a conventional LO phase scan of the fixed
quantum state j��i�const

s i. We shall name this technique
‘‘remote balanced homodyne tomography.’’

For each value of the interferometer phase ’int and upon
detection of an idler photon, stable and fast quadrature
measurements have been realized on the corresponding
pair of consecutive signal time bins (plus one containing
just the vacuum and used for calibration), while keeping
both the local oscillator and the homodyne detection ap-
paratus unchanged. A total of 106 quadrature measure-
ments, equally distributed over the range 	0; �
 of ’int,
has been performed on each of the three time bins. The
experimental results are reported in Fig. 2, where we plot
the measured values of the quadratures X1 and X2 obtained
for three different values of the remote phase �i, while
leaving �� fixed. According to the above reasoning,
these results also represent the marginal distributions
p�X1; X2;��� associated with the ebit of Eq. (1) for �i �
FIG. 2. Joint marginal distributions of the measured two-mode
field quadratures for: (a) �i � ���, (b) �i � �=2���,
(c) �i � ����, while leaving �� fixed. These are also the
joint marginal distributions p�X1; X2;��� associated with the
ebit of Eq. (1) for �i � 0, and corresponding, respectively, to
�� � 0, �=2, �. The histograms are the single-mode marginal
distributions p�X1� and p�X2� together with the corresponding
best fits. The marginals for the x� quadratures are plotted on the
diagonal axes above (c).
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0, and obtained for three different values of the relative
phase ��. Notice that, while the joint distribution
p�X1; X2;��� is strongly phase dependent, the marginal
distributions p�X1� and p�X2� associated with each tempo-
ral mode, separately, are phase independent. This is con-
sistent with the fact that each mode, separately, is an
incoherent statistical mixture of vacuum and single-photon
Fock state; however, the pair of modes 1 and 2, as a whole,
is in the coherent superposition described by Eq. (1), with
�i � 0. Figure 2 also shows that a single-photon Fock state
is defined in the phase space �x�i�0

� ; y�i�0
� �, while the

vacuum is defined in the phase space �x�i�0
� ; y�i�0

� �, as
expected from Eq. (4).

Figure 3(a) reports the reconstructed density matrix:
�̂ � �1� ��j0ih0j � �j��i�0

s ih��i�0
s j, where the overall

efficiency � � 60:5% accounts for both preparation and
detection efficiencies; notice that almost no multiphoton
contribution exists. From this figure it is also apparent that
the vacuum contamination, hence the losses, does not
degrade the coherence of the remotely delocalized single
photon; in fact, both the nondiagonal and the diagonal
(j01ih01j and j10ih10j) elements of the reconstructed den-
sity matrix are reduced by the same amount. This may be
understood as a consequence of the common losses under-
gone by the pair of entangled time bins. Figures 3(b) and
3(c) reproduce, respectively, the �x1; y1� and �x1; x2�
sections of the reconstructed 4D Wigner function
W�i�0�x1; y1; x2; y2�. The cross section �x1; y1� resembles
the standard Wigner function of a single-photon Fock state,
but is characterized by a well-defined phase; the existence
of this phase is the result of the coherent delocalization of
the single photon between two separate temporal modes.
The �x1; x2� section of the reconstructed Wigner function
explicitly shows the correlation between the quadratures x1

and x2; the nonfactorable nature of the delocalized single
photon is here apparent.
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FIG. 3 (color online). (a) Reconstructed density matrix ele-
ments �klmn � hk1l2j�̂jm1n2i corresponding to the state of
Eq. (1) with �i � 0. Cross sections of the reconstructed 4D
Wigner function: (b) W�i�0�x1; y1;�0:1;�0:1�, and
(c) W�i�0�x1; 0; x2; 0�.
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FIG. 4 (color online). Three-dimensional contour plot of the
Wigner function section W�i �x1; 0; x2; 0� associated with the
single-photon ebit of Eq. (1) versus its characteristic remotely
tunable phase �i. The surfaces shown correspond to three values
of the Wigner function, namely: W�i � �0:2; 0:05; 0:1. Insets:
contour plots for three specific values of the phase �i.
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In summary, the experimental reconstruction of the
Wigner function of the conditionally prepared single-
photon ebit has enabled us to verify its entangled nature
and study its purity. Besides the nonclassical behavior
typical of single-photon Fock states (negative values
around the origin), the reconstructed 4D Wigner function
has been found to be characterized by an intriguing phase
information and by correlation between well-separated
temporal modes, as expected from Eq. (2). It may seem
counterintuitive that a single photon simultaneously affects
two nonoverlapping temporal modes or, equivalently, car-
ries a well-defined phase. However, the effect is a direct
consequence of the coherent superposition remotely in-
duced between otherwise independent signal time bins; it
can then be understood in terms of quantum entanglement
between two copropagating but distinct temporal modes
carrying a single photon.

From the applicative viewpoint, one of the most inter-
esting aspects of the proposed scheme is the dependence of
the relative phase characterizing the delocalized (signal)
single photon on both the relative phase between pump
pulses and the phase delay introduced by the remote
Michelson interferometer. Based on this effect, for any
fixed value of the remotely controlled phase �i, one may
generate, in the signal arm, a specific single-photon ebit.
This point is pictorially demonstrated by Fig. 4, where we
draw the contour plots of the �x1; x2� section of the 4D
Wigner function for all possible values of the remotely
tunable phase �i characterizing the ebit of Eq. (1). The
Wigner function W�i�x1; 0; x2; 0� associated with each
conditionally prepared ebit j��i

s i reveals a specific corre-
lation between the field quadratures of two distinct signal
temporal modes; as the preparation phase �i is changed
from 0 to �, we observe the transition from correlated to
anticorrelated quadratures through a ‘‘saddle’’ point at
02050
�i � �=2, where the anticorrelation is transferred into
the quadrature space �x1; y2� (not shown in figure). In other
words, the proposed scheme can be regarded as a remotely
tunable source of arbitrary single-photon ebits; such a
source is highly desirable for applications in quantum
information technology.
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