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Commutability between the Semiclassical and Adiabatic Limits
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We study the adiabatic limit and the semiclassical limit with a second-quantized two-mode model of a
many-boson interacting system. When its mean-field interaction is small, these two limits are commut-
able. However, when the interaction is strong and over a critical value, the two limits become
incommutable. This change of commutability is associated with a topological change in the structure
of the energy bands. These results reveal that nonlinear mean-field theories, such as Gross-Pitaevskii
equations for Bose-Einstein condensates, can be invalid in the adiabatic limit.
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The experimental creation of Bose-Einstein condensates
(BECs) with dilute alkali atomic gases has generated great
excitement and literally created a new subfield in physics
[1,2]. One of the main reasons is that it has made it possible
to test experimentally some fundamental and important
physics that could only be discussed theoretically before.
For instance, Tonks-Girardeau gas and the quantum phase
transition between superfluid and Mott insulators have
been studied by theorists since the 1960s; they were ob-
served experimentally only recently with BECs [3,4].
There are now even discussions on how to use BECs to
study black holes [5] and superstrings [6].

In this Letter we discuss a fundamental concept in
quantum mechanics, the commutability of the semiclassi-
cal limit and the adiabatic limit, with a second-quantized
two-mode model. We suggest a possible experimental
testing of this concept with BECs. This concept is due to
Berry [7]. In brief, consider a quantum system whose
Hamiltonian is time dependent,
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One can eliminate � from the above Schrödinger equation
with a scaled time � � �t and an effective Planck constante@ � �@. With this scaling argument, Hwang and Pechukas
claimed that the semiclassical limit @! 0 and the adia-
batic limit �! 0 are equivalent [8].

This point was refuted by Berry [7], who pointed out
that these two limits are not equivalent because the
Hamiltonian H may depend implicitly on @. Moreover,
he showed that these two limits are incommutable in a
simple double-well model: the Landau-Zener (LZ) tunnel-
ing rate is zero if the adiabatic limit �! 0 is taken first; it
becomes one if one takes the semiclassical limit @! 0 first
[7]. Since it is impossible to change @ experimentally, this
concept has remained a game of theorists.

We revisit the commutability between the semiclassical
limit and the adiabatic limit with a second-quantized two-
mode tunneling model. This model can be used to describe
a BEC system where only two quantum states are impor-
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tant, such as in a double-well potential or with two internal
quantum states [2,9]. In this model, the semiclassical limit
is N ! 1 with N being the number of bosons. In the large
N limit, the second-quantized model becomes a two-level
mean-field model. We show that one can recover the
second-quantized model by quantizing this mean-field
model with the Sommerfeld rule. As N can be changed
in experiments, the semiclassical limit becomes experi-
mentally accessible.

More interestingly, the commutability between the two
limits, N ! 1 and �! 0, in this second-quantized model
depends on its mean-field interaction strength c. If c is
small, the two limits are commutable; when c is over a
critical value, the two limits become incommutable. Such a
dependence on c is found to be related to a topological
change in the structure of the energy bands. These results
indicate that nonlinear mean-field theories, such as Gross-
Pitaevskii (GP) equations for BECs, can be invalid in the
adiabatic limit when the mean-field interaction is strong.
Finally, we discuss how this commutability can be tested in
a BEC experiment.

The second-quantized two-mode model is

Ĥ�
�
2
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where generators and annihilators ây; â and b̂y; b̂ are for
two different quantum states. In the Hamiltonian Ĥ, � is
the energy offset between the two quantum states and
changes with time as � � �t. The parameter v measures
the coupling between the two states while � > 0 is the
interacting strength between bosons. The minus sign be-
fore � indicates that the interaction is attractive. In this
system the total number of bosons N is conserved.

For this second-quantized model, its semiclassical limit
is N ! 1. In such a limit, the system’s dynamics is given
by the following nonlinear two-level model,
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where c � N� and jaj2 � jbj2 � 1. This model is often
called a mean-field model. Technically to obtain the mean-
field model, one focuses on the GP states [2] j�GPi �

1����
N!
p �aây � bb̂y�Njvaci. By computing the expectation

value hĤi � h�GPjĤj�GPi, one obtains the mean-field
Hamiltonian Hmf � hĤi=N (up to a trivial constant) in
the limit of N ! 1. The Hamiltonian Hmf leads to the
dynamics in Eq. (3). For a rigorous account of largeN limit
as a semiclassical limit in models such as Eq. (2), we refer
readers to Ref. [10].

We emphasize that the semiclassical limit N !1 is
taken with the mean-field interaction strength c � N�
kept constant. Physically, this is to ensure that the series
of systems with different N’s have about the same physics.
If � were kept constant instead of c, the last term in Eq. (2)
would become too dominating at the large N limit, com-
pletely changing the physics of the system. When the
model (2) is used to describe a BEC in a double-well po-
tential, the limit N !1 at a constant c is equivalent to
having a larger trap for more atoms in the BEC, or to tuning
� smaller with the Feshbach resonance technique [11].

We are interested in how the second-quantized model
equation (2) behaves in the two limits, N ! 1 and �! 0,
in particular, whether the model’s behavior depends on
which limit is taken first. For this purpose, we follow
Berry’s methodology [7] to focus on the tunneling behavior
of the quantized model.

In Fig. 1 the tunneling rates are plotted as a function of
the mean-field interaction strength c. Two sets of tunneling
rates are calculated: one with the quantized model (2) for a
fixed number of bosons; the other with the mean-field
model (3). In computing the tunneling rate, we have as-
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FIG. 1. Tunneling rate as a function of the mean-field interac-
tion strength c for v � 0:2. The solid lines are obtained with the
mean-field model (3) for � � 0:005; 0:001; 0:0001; 0:00001
(from top to bottom); the dot-dashed lines are with the quantized
model (2) for � � 0:001; 0:0001; 0:00001 (from top to bottom)
with N � 10. The inset shows the tunneling rates for the mean-
field model and the quantized model with different N’s at � �
0:0001, demonstrating the convergence.
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sumed that the system is completely in state a at t! �1;
the tunneling rate is the probability of remaining in state a
at t! 1, the end of dynamical evolutions. At a fixed
number of bosons, the dynamics of the quantized model
(2) can be found by expanding a quantum state in terms of
Fock states jNa;Nbi, where Na and Nb are numbers of
particles in quantum states a and b, respectively.

Upon careful examination of the data in Fig. 1, one
notices that c � v is a critical value. When c < v, the
tunneling rate goes to zero in the adiabatic limit �! 0
for both the mean-field model and the quantized model.
However, when c > v, the tunneling rate from the mean-
field model is always nonzero while the tunneling rate can
be zero for the quantized model. Since the mean-field
model is the semiclassical limit of the quantized model,
the mean-field result can be regarded as the result from the
quantized model with the limit N ! 1 having been taken.
Therefore, the results in Fig. 1 show that the tunneling
behavior in the quantized model (2) depends strongly on
the order of the limits taken while this dependence itself
relies on the value of the mean-field interaction strength c.

To understand the above results, we first examine the
energy levels of the second-quantized model (2) as func-
tions of �, the slowly changing system parameter. These
energy levels can be found by directly diagonalizing the
Hamiltonian Ĥ and they are plotted in Fig. 2. There is a
drastic change in the structure of energy levels as the mean-
field interaction c changes: a net of anticrossings appears in
the lower part of the quantized energy levels when c > v.
As known before [12], when c > v there is a loop structure
emerging in the energy band of the mean-field model (3).
When the mean-field energy levels (circles) are also plotted
in Fig. 2, we find that the quantized energy levels are
bounded by the mean-field energies. In particular, the
mean-field energy levels envelop the net of anticrossings
in the quantized energy levels. Such a correspondence was
first noticed in Ref. [9].

The structure change in the energy bands is associated
with a change in the phase space of the mean-field model
(3) as shown in Fig. 3. In plotting this figure, we notice that
the mean-field model, in fact, has only two independent
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FIG. 2. Energy levels from the second-quantized model Ĥ
(N � 20) and the mean-field model Hmf . The solid lines are
quantized energy levels; the open circles are mean-field energy
levels. Note that for comparison with the mean-field theory, the
quantized energy levels from Ĥ have been divided by N.
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variables and its Hamiltonian can be reduced to [13]

Hmf � �p� cp2 �
v
2

�����������������
1� 4p2

q
cosq; (4)

where p � �jaj2 � jbj2�=2 and q � �b � �a with �a;b
being the phases of a and b. It is clear from Fig. 3, when
c < v, there is one minimum and one maximum; when c >
v, we see two local minima, one maximum and one saddle
point. Since these extrema points correspond to the eigen-
states in the mean-field energy bands in Fig. 2 [13], the
structure change in the phase space is apparently connected
with the structure change in the energy levels.

This connection can be further explored by requantizing
the mean-field model Hmf with the Sommerfeld theory,
which says that the quantum motions are the periodic
motions in the classical phase space that satisfy

1

2�

I
pdq � n@=N; n � 0; 1; 2; . . . : (5)

The division by N comes from the fact that the mean-field
Hamiltonian is an average for one particle, Hmf � hĤi=N.
One can view @eff � @=N as the effective Plank constant
for Hmf . In our calculations, the natural unit @ � 1 is used.
For convenience, we shall call the energy levels obtained
with Eq. (5) the Sommerfeld energy levels. They are shown
and compared to the quantized energy levels of Ĥ in Fig. 4.

When c < v, the mean-field Hamiltonian has exactly
one maximum (q � 0) and one minimum (q � �). The
Sommerfeld quantization around the maximum produces
energy levels lower than the maximum energy while the
quantization around the minimum generates energy levels
higher than the minimum. This explains why the mean-
field energy levels bound the quantized energy levels in
Fig. 2. We also see that the energy gap arises from the
different quantization number in Eq. (5), from which we
estimate that the energy gap between the lowest two energy
levels at � � 0 is � � v

�����������������
1� c=v

p
, independent of N,

agreeing with the numerical results in Fig. 5(a).
When c > v, the phase space of Hmf becomes very

different: there are two local minima with an additional
FIG. 3. Energy contours of the mean-field model Hmf . Left:
c � 0:1, v � 0:2, � � 0:0; right:c � 0:4, v � 0:2, � � 0:0. The
gray colors indicate the relative values of the mean-field energy
with darker gray for smaller energy values.
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saddle point. In this case, the Sommerfeld quantization
around the two local minima gives rise to two sets of
Sommerfeld energy levels. In the lower part of Fig. 4, for
clarity, we have plotted only one set. If two sets were
plotted, they would form a net of crossings, matching
very well with the anticrossing net from Ĥ. In doing the
Sommerfeld quantization, we have ignored the tunneling
through the energy barrier between the two local minima.
Once the tunneling is considered, degeneracies are lifted
and the crossings become anticrossings. This shows the
energy gaps inside the triangular net have a different origin
from the energy gaps outside the net or in the case of c < v.
The energy gaps produced at these crossings can be esti-
mated with the WKB method. Since the effective Planck
constant for Hmf is @=N, we expect that the gaps decrease
exponentially with N. This is exactly what the numerical
results in Fig. 5(a) indicate.

It is now not difficult to understand the tunneling be-
havior seen in Fig. 1. Let us recall the LZ tunneling in a
two-level model [14]. As � changes with time as � � �t,
the LZ tunneling rate is rLZ � exp����2=2��, where � is
the energy gap between the two levels. For a multilevel
system like our second-quantized model Ĥ, the above
equation should still be a very good approximation for
the tunneling rate between two consecutive energy levels.
We use the tunneling between the two lowest energy levels
as an example. As already analyzed, the energy gap
changes with N as follows,

� �
�
�1v c < v
N�2 exp��	N� c > v

: (6)

The parameter �1 �
�����������������
1� c=v

p
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FIG. 4. Comparison between the energy levels of the second-
quantized model (dashed line) with N � 40 and the Sommerfeld
energy levels (open circles). (a) c � 0:1, v � 0:2; (b) c � 0:4,
v � 0:2. For clarity, we have plotted only a portion of the energy
levels.
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FIG. 5. (a) Energy gap between the lowest two eigenenergies
in the second-quantized model at � � 0. The squares are for c �
0:1 and the dots for c � 0:4, with v � 0:2 for both. The solid
line is an approximation result � � v

����������������������
1� c2=v2

p
for c < v.

(b) Ratio of the bosons in the right well at the end of the
tunneling process. The computation is done with the second-
quantized model Ĥ with a sweeping rate � � 0:0001.
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�2 and 	 can be computed with the WKB method as in
Ref. [7] or with a more sophisticated method [15]. This
leads to the following tunneling rate

r� rLZ �

8<: exp��
��2

1v
2

2� � c < v

exp��
�N2�2

2

2�e2	N� c > v
: (7)

For the case of c < v, it is clear that we have

lim
N!1

lim
�!0

r � lim
�!0

lim
N!1

r � 0; (8)

which shows that the two limits �! 0 and N ! 1 are
commutable. This explains why when c < v, both sets of
the tunneling rates in Fig. 1 become zero as �! 0.

For the other case c > v, the tunneling rate takes differ-
ent values at two different limits:8<:

lim
N!1

lim
�!0

r � 0

lim
�!0

lim
N!1

r > 0
: (9)

This reveals that the two limits are no longer commutable.
In the first limit, where the adiabatic limit �! 0 is taken at
a fixed number of bosons, the energy gap is finite and one
can always be slow enough not to cause tunneling. In the
second limit, since the energy gap is already closed at N !
1, tunneling occurs no matter how slow � changes. This
explains why the tunneling rate from the mean-field model
is always nonzero for c > v. The incommutability of these
two limits also implies that mean-field theories, such as the
GP equation for BECs, can be invalid for the adiabatic
limit. One example is the Bloch states for a BEC in an
optical lattice. In such a system, the Bloch wave number k
can be regarded as an adiabatic parameter. If the GP
equation were always valid in the adiabatic limit, it would
mean that stable Bloch states should exist for all possible k.
However, as shown in Ref. [16], a significant portion of
Bloch states are unstable.
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With cold atomic gases, we believe that it is now pos-
sible to test experimentally the commutability between the
semiclassical limit and the adiabatic limit. For instance,
one can load a BEC into a double-well potential generated
by two laser beams [17]. The energy offset � can be created
by using different intensities for the two laser beams. To
keep the mean-field interaction parameter c constant for
different boson numbers, one can either use the Feshbach
resonance technique [11] to adjust the interaction between
atoms or change the trap size. In experiments, it is hard to
measure the tunneling rate r between the two lowest en-
ergy levels as we just discussed. However, one can measure
the number of atoms in either of the two potential wells.
Once the experiment is set up, the most striking observa-
tion will be as shown in Fig. 5(b). For c < v, if the system
initially has all its atoms in the left well (quantum state a),
then all the atoms will be in the right well for a fixed
but very small sweep rate. It does not depend on N. For
c > v, not all the atoms will fall into the right well: larger
N means less atoms in the right well. This difference
illustrates the commutability of the two limits, �! 0
and N ! 1.
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