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Coherent Quantum Evolution via Reservoir Driven Holonomies
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We show that in the limit of a strongly interacting environment a system initially prepared in a
decoherence-free subspace (DFS) coherently evolves in time, adiabatically following the changes of the
DEFS. If the reservoir cyclicly evolves in time, the DFS states acquire a holonomy.
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Geometric phases and Holonomies are generated by the
presence of a curvature (the Berry curvature) in the Hilbert
space. The natural way to gain information on this curva-
ture is to perform interferometry on a state vector which
has been dragged along closed loops in the Hilbert space.
To achieve this task the methods exploited are usually
divided into two main categories: in the first one, a state
is driven around the space by means of a coherent time
evolution [1]. For example, this can be obtained by an
adiabatic and cyclic motion, which forces the state to
explore eigenspaces of a parameterized Hamiltonian. The
second category consists of all those motions that result
from non-trace-preserving quantum operations. For ex-
ample, a series of von Neumann measurements can be
used to evolve wave functions by projecting the state vector
onto a sequence of overlapping subspaces. As an effect of
this measurement-induced motion, a quantum system may
indeed acquire a geometric (Abelian or not) phase [2]. The
Pancharatnam geometric phase is a typical example of this
category [2,3].

Even irreversible quantum processes such as systems
interacting with Markovian reservoirs can be used to gen-
erate geometric evolutions. Many environmental models
have the characteristic of not affecting some particular
quantum states when these are lying in suitably ‘“‘pro-
tected”” subspaces, so-called decoherence-free subspaces
(DFSs) [4]. States lying in these subspaces are stationary;
i.e., they do not evolve in time. Having control over the
reservoir (e.g., through engineered reservoirs) may imply
an indirect control on the protected states of the system [5].
In particular, modifications to the parameters of the reser-
voir may result in a controlled time evolution of the pro-
tected subspace as a whole. If this motion is accomplished
in a sufficiently smooth way, it can be shown that states
lying in this subspace evolve coherently, thereby acquiring
information about the geometry of the space explored.

In this Letter we will explore the possibility of generat-
ing (Abelian and non-Abelian) holonomies due to a smooth
motion of a DFS in the Hilbert space. It is worth stressing
that the existence of a time-dependent DFS is by no means
trivial, and its presence often reflects a symmetry preserv-
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ing evolution. Under a suitable ‘“‘adiabatic condition™ [6],
it can be shown that a state lying in a DFS remains inside
the subspace and, hence, is rigidly transported around the
Hilbert space together with the DFS. The evolution expe-
rienced is, in fact, coherent, although entirely controlled
via an incoherent phenomenon. When the DFS is eventu-
ally brought back to its initial configuration, the net effect
is an holonomic transformation on the states lying in this
subspace. Notice that the evolution obtained is purely
geometrical: no dynamics affects the system inside the
DFS; hence, no dynamical phase is accumulated during
the evolution.

Moreover, we will show that in the first order correction
to the adiabatic evolution the DFS is affected by a deco-
herence process. This effect is unavoidable, at least con-
ceptually, as far as a nontrivial holonomy is to be obtained.
On the other hand, the decoherence time inside the DFS
can be made arbitrarily large, in the limit of strong deco-
herence and/or slow evolution of the subspace. In fact, the
decoherence affecting the DFS becomes weaker as the
decoherence acting on the outside world gets stronger.
This counter-intuitive effect is the essence of the adiabatic
approximation. It is, in fact, the fast evolving decoherence
process affecting the outside world which decouples the
latter from the DFS. Alternatively, this evolution can be
understood in terms of a “Zeno effect” [7], where the
action of strong environment can be regarded as a measur-
ing apparatus continuously monitoring the DFS of the
system. By using this effect in degenerate subspaces it is
possible to realize robust holonomic gates for quantum
computation, analogous to those realized by means of
adiabatic evolutions [8].

Let us first consider a system described by the density
operator p evolving under the effect of a Markovian envi-
ronment. The decoherence process due to the interaction
with such an environment is described by the following
master equation (7 = 1):

d . N
(7’? = —i[H, p]— Z{FZFkP + pI{T, — 2T, pT},
=i
(1)
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where the commutator generates the coherent part of the
evolution and the remaining part represents the effect of
the reservoir on the dynamics of the system. The action
of each I';y (the Lindblad operators) accounts for the
different decohering processes that can affect the system.
In the Markovian formalism, a DFS is defined as the
common eigenspace of all the Lindblad operators:
Span{|)|Lcl) = cil), V &}

Suppose that the evolution is solely due to the action of
the environment, i.e., the presence of a Hamiltonian evo-
Iution can be neglected compared to the effect of the
environment (H = 0). Consider, now the situation in
which the environment depends on some time-dependent
external parameter. This time dependence might be re-
garded as either the action of an experimenter who can
control some degree of freedom of the reservoir, or “drift”
of some parameter intrinsically occurring in the environ-
ment. In general, we will assume the rate of this evolution
is very small compared to characteristic time scales of the
system. Under this assumption, the evolution is governed
by a time-dependent master equation of the form:

% — —SUrlOr0p + pTOT0) - 204(0pT ()
k

2

where the operators I';(¢) are time dependent. For each
instant of time we can consider the eigenspaces K(t) =
Span{|y)|T'y(0)|4f) = cilip), ¥V k} of the instantaneous op-
erators I';(7). Let T1(z) be the projector onto JK(z), and
I, = 1 — II(z) the projector onto the orthogonal comple-
ment JC (¢). Consider the operator

D() = > [Te()TTp(0) = 2c;(OT(0) + le,(OPT] (3)
k

whose Hermitian part P(r) = [D(f) + D(¢)]/2 is positive
semidefinite. The space K() can be defined as the kernel
of D(), i.e., D(1)I1(¢) = 0. The assumptions that we will
consider are the analogies to the hypothesis of the usual
adiabatic theorem [9,10]: (i) I1(¢) is a chain of projection
operators, smoothly depending on time, [more precisely
I1(r) norm-twice differenciable] [10]; (ii) the nonzero
eigenvalues of P(¢) are bounded from below by a time-
independent value y > 0.

Under these assumptions, we will show that: (a) it is
possible to formulate an adiabatic limit, for which XK is
decoupled from the environmental action, and therefore it
is decoherence free; (b) in the adiabatic limit, if the sub-
space K(t;) at some time #, = fy + T coincides with
XK(t,) at the initial time #,, the neat evolution experienced
by a state belonging to K is purely geometrical; i.e., the
evolution between t; and ¢, is described by the holonomy
(Abelian or not) associated with the path traversed by K(r)
in the Hilbert space; (c) the first order correction to the
adiabatic limit is a source of decoherence, whose time
scale is inversely proportional to the smallest time scale

of the decoherence affecting the & |, the latter being the
orthogonal complement of K.

We would like to describe the evolution at some time
t; = to + T of states initially prepared inside the subspace
XK (1), in the limit in which the time rate of motion of K(z)
is much smaller than the smallest characteristic time scale
of the system, which is y~!. It is then convenient to
introduce a time-independent parameter s = (¢t — t,)/7T,
with s € [0, 1], and solve the master equation in the limit
of T — oo. By following a similar approach of the standard
adiabatic theorem [9], let us consider a unitary operator
O(s) for which: %(OTHO) = 0 with O(0) = 1. The op-
erator fulfilling this condition is defined by the equation
i%O(s) = G(s)O(s) [with initial condition O1(0) = 1]
[9,10] where the generator is G = i[%, IT] + O(s), and
Q(s) is an arbitrary block diagonal Hermitian operator, i.e.,
I1Q(s)I1; = 0. By definition, Ot describes the change of
picture to the “‘rotating frame,” which rigidly follows the
subspace K(s). In fact, in this picture, the projector
I1(s) = ot(s)II(s)0* (s)t = I1(0), and the corresponding
subspace K is time independent. The freedom in the choice
of the generator G(s) corresponds to the arbitrary choice of
a smooth chain of basis within K and XK, and it is often
referred in this context as gauge freedom. Under repara-
metrization t — s = (¢t — t,)/T, and change of frame p —
p = 01p0, Eq. (2) takes the form:

9 16, P~ yTD(s)p + pDHs) — 23 TypT])
k

“)
with G = 0tGo, T, = (01,0 — ¢1)/,/y, and D =
0TDO/y. Notice that T',II = 0 and that the operator D
has been renormalized, so that its Hermitian part P =
(D + DY)/2 =3, T/T; has a minimum no-null eigen-
value not smaller than 1.

From Eq. (4) it is possible to see that the incoherent part
of the evolution affects only system states lying outside the
subspace K. However, this does not prevent a state ini-
tially prepared in XK to be exposed to decoherence. Indeed,
the off diagonal terms Gy = T, G TT and Gl of G can
couple the subspace X to its complementary, and may
eventually spoil the coherence of the former. In order to
unwind the effect of the perturbation introduced by G from
the main decoherence process, it is convenient to introduce
a transformation which allows the evolution to be de-
scribed in terms of two effectively decoupled manifolds.
To this end, consider the following effective non-Hermitian
Hamiltonian:

I:I(s) = —eiS(S)[nG(s) + l'D_(S)]e—iS(s) (5)

where n = 1/yT is the adiabatic parameter and S(s) is a
(non-Hermitian) operator defined by the condition that:
() A, =11, ANl =0 (with [T, =1 —II) and
(B) TISII =11, SII, = 0 [11]. Let us now analyze the
time evolution of the density matrix under the transforma-
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tion ¢'S. To this end consider the operator p = ¢Spe~'S".
Notice that although this transformation is not unitary, p is
still a positive semidefinite operator, and hence it is a valid
density matrix, up to a normalization factor N =
Tr(peS~5") > 0. By assuming for simplicity that the
time derivative of S is negligible, the evolution of p is
given by

@ o ap-pan+ 2y ©

ds n Uk
with T, = ¢/5T'.e'S. The advantage of this expression is
that H is now block diagonal and the main coupling effects
are only due to the second term. We are interested in the
evolution of the system in the limit of p < 1. It is, then,
convenient to consider the expansion of S in series of 7:
S = 1S, + 7°S, + 0(n?), and, correspondingly, the ex-
pansion of the effective Hamiltonian H = H, + nH, +
n?H, + O(n?®). By using the above conditions () and ()
it is possible to show that:

Ay = —iD(s), (7
A,=-NGN-M,6M,, ®)
A, = —I[is,, GIT — 1, [iS,, GIT,, (9

where §; = D™ 'G,; — H.c.. Notice that D! in the last
expression is well defined, as it is restricted to the subspace
XK | where D is invertible. In the limit of n << 1 the
evolution of p can be expressed as follows:

O 1
%’; = L[p)+ L]+ n L5+ 0. (10)

The largest contribution in (10) is given by

L [p]= =D{TITp + pTIT, — 204plTY, D)
k

where we also expressed I, =T, + in[$,, ]+ 0(n?)
and retained only the zeroth contributions in 1. By defini-
tion of I', Eq. (11) acts trivially on the partial density
operator ppr = I p1II, ie., L£L_[ppr] = 0. Therefore,
the most relevant nontrivial evolution affecting the state
Ppr 1s given by the term L in the adiabatic expansion:

Lolpprl = ilGpr, ppr] with Gpp =IIGII, (12)

where the fact that ', ppr = 0 has been used. This ex-
pression explicitly demonstrates that retaining only the
terms up to the zeroth order in the adiabatic parameter 7
yields to an evolution for pp, which is unitary, and, there-
fore, coherent and trace preserving. This shows the exis-
tence of an adiabatic limit for n — 0, in which the
evolution is confined—by the decoherence process it-
self—into a suitable subspace, in which the evolution
maintains its coherence. It is worth noticing that, due to
the nonunitary transformation e, the new decoherence-

free subspace X is slightly modified from the original X.
Indeed, the presence of the generator of the adiabatic

motion, G, deforms the DFS, whose (generalized) projec-
tors are to be identified with [T — IT = ¢/STTe =" = IT +
in{S,, [1}. As expected, in the limit n — 0, K converges
to XK.

The evolution of the partial density matrix ppr can be
easily solved in the adiabatic limit and formally expressed
as

p = U(s)p(0)UT(s)
with U(s) = Texp(i[s GDF(T)dT>,
0

where P is a path ordering operator. Let us now consider a
closed evolution of XK, i.e., an evolution for which
I1(z;) = I1(z,). Then it is possible to express the total
evolution as

uQl) = ?exp(iﬁl GDF(T)dT> = ’Pexp(yggd/{),

where the right hand side expresses the time evolution in
terms of a path integral. The operator A, is a (non-Abelian)
holonomic connection defined as a vector of components

90\, Ay. ) =
. I, (13)

A, =110t
where A’s are a set of variables parameterizing the trans-
formations O(s). U(1) has an inherently geometrical na-
ture: it is independent of the time rate and only a function
of the structure of the underlying Hilbert space. The non-
trivial value of U(1) is, in fact, a manifestation of the
curvature of the Hilbert space experienced by p when it
is dragged along in the subspace XK. The connection A
behaves as a proper gauge potential: under a change of
basis in K, O(s) — O'(s) = 0(s)Q(s), where [II, Q] =
0, A transforms as A — A’ = Q" 1AQ + Q~'VQ. By
choosing a convenient gauge for which I10'(1)II = 1II,
it is possible to show that the net effect on the state p =~
ppr after a complete cyclic evolution is given by

U'(1) = :Pexpfi[%, H}ds, (14)

which is independent of the gauge chosen [12].
Equation (12) implies that the largest relevant noncoherent
contribution to the dynamics of g, can originate only at a
further order in the adiabatic parameter 7, i.e., from £_;.
By substituting Eq. (9) in Eq. (6), and by making use again
of the fact that I', 5 = 0, it is possible to show that the
first order correction to an evolution restricted to & can be
given in the following closed form:

Lilpprl = —ilZ ppr] — Z{AzAkﬁDF + porAf Ay
3
—2MipprALh (15)

where Ak = kal = ka_lGoff and Z= S;FRSI =
iGI (D"t — D™1)G . The superoperator L, generates
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an incoherent evolution with a typical time scale on the
order of 1. It is worth stressing that, although Eq. (15)
looks similar to a master equation in the Lindblad form, it
generates an evolution that, when restricted to the subspace
j(, can be non-trace-preserving. This is, in fact, the case
when IT; A IT # 0. As, by construction, the evolution in
the whole Hilbert space is trace preserving, this clearly
indicates a leakage of population from the DSF to the
orthogonal subspace, with a time rate on the order 7.
Remarkably, since L, is the largest order incoherent

term affecting the subspace XK and it is proportional to

v~ 1, itimplies a decoherence time in X which is inversely
proportional to the original decoherence time affecting the

complementary space: a stronger decoherence in JC| im-

plies weaker environmental effects in XK. This apparently
counter-intuitive phenomenon is the essence of the adia-
batic approximation. It is the fast dynamics associated with

the incoherent processes acting on XK | which is respon-

sible for decoupling the subspace X from its complement.
This fast evolution averages out the effect of G,y and

results in a decoherence time scale in K which is qua-
dratic in T. This is the reason why, in spite of the relatively
long time scale T needed for the adiabatic approximation,
the system in X is guaranteed to be coherent for a time
which scales with a further order of magnitude in 7.
Alternatively, the same result can be interpreted from the
perspective of a quantum Zeno effect. The decoupling

between K and K L can be regarded as the effect of a
continuous measurement process performed by the envi-
ronment. The latter continuously monitors whether the

system state leaks to x 1 and projects it back into K in
a time scale of y~!, which is much faster than the leakage
process induced by G-

On the light of the previous discussion on £, a remark
on the generator of the holonomy is in order. Notice that
Eq. (14) implies that, after a closed motion, a nontrivial net
evolution is achieved only if i[%, II] = Gy + Ggff is
nonvanishing. Indeed [%, I1] =0 implies dIl/ds = 0,
which yields to a trivial motion of the subspace K, and
the resulting holonomy has to be trivial. This is in agree-
ment with the idea that the holonomy is the result of the
curvature of the Hilbert space experienced by the subspace
K(z) as the latter traverses a nontrivial closed motion.
Therefore, for an holonomic evolution in XK, the latter
subspace needs to be coupled to K| via G, which, as
seen in Eq. (15), exposes p, to environmental effects. This
implies that decoherence on X is in principle unavoidable,
as far as a nontrivial holonomy is concerned. On the other
hand, as seen before, £, appears as a small perturbation in
the adiabatic expansion, and therefore its effects are adia-
batically eliminated in the limit of large enough 7.

The results presented in this manuscript reinforce the
idea that geometric evolutions not only do not depend on
the dynamical procedures used to generate them, but can

even be obtained in the presence of strong coupling to
external reservoirs (nonunitary evolutions). As shown
here, the interaction with the environment can be used to
adiabatically manipulate quantum states in a coherent way,
and generate holonomies in arbitrary dimensional DFS.
Apart from their fundamental interest, these results, com-
bined with techniques for reservoir engineering, may pro-
vide alternative approach for robust quantum computation.
As for any other geometrical procedure, this holonomic
evolution has an intrinsically fault tolerant nature [13], and
due its very nature it is free from dynamical contributions,
which are known to be generally more sensitive to errors.
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