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Dynamical Advantages of Scale-Free Networks
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A dynamical analysis of common network topologies is given and it is reported that a scale-free
structure has two vital and distinctive features. First, complex but nevertheless reproducible states exist
and, second, single-site induced state switching reminiscent of gene-expression control exists also. This
indicates that scale-free networks have key dynamical advantages over other network topologies that
could have contributed to their evolutionary success and thus may provide another reason for their

prevalence in nature.
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The discovery of the ubiquity of scale-free networks
[1,2] and especially their prevalence in biology has led to
many exciting insights into fundamental underlying prin-
ciples that govern complex systems, and much progress has
been made in understanding properties that are more or less
direct consequences of the topology [3]. Even so, the net-
work anatomy needs to be complemented by network dy-
namics as especially biological systems contain large num-
bers of constituents that have their own dynamics but
whose collective actions determine the overall behavior.
It is therefore essential to consider the temporal evolution
of complex networks [4,5] as was, e.g., recently done by
Argollo de Menezes and Barabasi in a study of five natural
and technological networks [6], or the convergence of
duplication graphs to unique attractors as investigated by
Raval [7].

Here, the problem of understanding dynamical features
is approached differently by placing simple chaotic ele-
ments on top of commonly encountered network topolo-
gies [8—12]. The overall network behavior is then observed
as a function of the structure and of parameters represent-
ing the strength of the links and the local nonlinearity. This
approach is based on (for complex systems), the generally
successful premise that universal features often emerge
from fundamental properties such as the network structure,
coupling, and local dynamics [13,14].

Usually systems as employed here are referred to as
coupled map lattices and stunningly rich phenomenologies
have been discovered in many prototype models that
powerfully describe unifying underlying principles [15—
21]. A further motivating factor is the concept that cell
states can be considered as attractors of the complex sys-
tem formed by the cellular constituents [22]. Consequently,
it is of particular interest to study how attractor landscapes
are influenced by network topology.

Figure 1 shows the network topologies compared here
for the case of 10 or 16 nodes for ease of visibility, though
the simulations were carried out for networks with between
50 and 200 nodes. Figure 1(a) shows diffusive links theat
have been extensively studied by physicists for analyzing
the spatiotemporal behavior of high-dimensional chaotic
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systems. Nodes were lined up on a circle and first and
second nearest neighbors connected. Figure 1(b) shows the
hierarchical network that combines a scale-free structure
with modularity, albeit in this case at the expense of a
random component. Figure 1(c) shows the small-world
network based on the topology introduced by Watts and
Strogatz to combine local links [as in Fig. 1(a)] with
relatively short path lengths to other nodes by adding a
number of random links. The network is obtained by add-
ing some random links to Fig. 1(a) (this slightly increases
the average degree). Figure 1(d) is the original model of
Watts and Strogatz, which again starts with a diffusive
topology but then continues by randomly rewiring links
(this keeps the average degree constant). Figure 1(e) shows
the scale-free networks as introduced by Barabasi to model
the coexistence of highly connected hubs with less con-
nected nodes as encountered in, e.g., the Internet and intra-
cellular networks. After starting with two linked nodes, the
network is grown by preferential attachment. Figure 1(f)
shows a random network as described by the random graph
theory of Erdos and Rényi (ER-random networks). Nodes
were randomly selected and then randomly linked to an-
other node.

For the purpose of the investigation here, given a certain
set of parameters, the behavior of the commonly described
network topologies like the diffusively or globally coupled

a) b) C)

FIG. 1 (color online). Network topologies whose dynamics are
compared: (a) diffusive, (b) hierarchical, (c) small-world,
(d) Watts-Strogatz, (e) scale-free, and (f) ER-random.
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map can be roughly divided into two broad classes when
running the simulations many times from random initial
conditions: Either there is a very large number of generally
similar but clearly nonidentical attractors like the frozen
random patterns in the diffusively coupled logistic lattice
[23], or there is a small number of usually nearly identical
attractors that do not depend on the initial settings such as
the wavelike pattern selection attractors again found in the
diffusively coupled logistic lattice [24] (a similar distinc-
tion can also be made in globally coupled maps by con-
sidering the partially ordered and ordered phases [15]).

Defining attractor diversity as the fraction of different
attractors that can be obtained when resetting the simula-
tions completely, such that both new random initial con-
ditions and new wirings between the nodes are chosen, and
attractor reproducibility as one minus the fraction of differ-
ent attractors that can be obtained when only restarting the
simulation with new random initial conditions but without
rewiring the nodes, it follows that topologies like diffusive
and global coupling, due to their lack of random con-
nections, can display attractor diversity without attractor
reproducibility (frozen random pattern) or attractor repro-
ducibility without attractor diversity (wavelike pattern
selection).

In biological and other systems capable of (evolution-
ary) progress, however, one would need a combination of
both diversity and reproducibility. That is to say, there
should be a large space of possible arrangements represent-
ing system functionality, while a given arrangement should
yield reproducible results in that it should not be very
sensitive to the environment and allow for only a limited
number of different attractors.

To compare attractor diversity and reproducibility, simu-
lations were carried out on the six network topologies
shown in Fig. 1 in the following way: a logistic map given
by x,+1 = f(x,) = 1 — ax2 with x the state variable, n the
time, and « the nonlinearity is placed at each node and
coupled according to the network topology with a coupling
constant € such that the state of node i at time step n + 1 is
determined by
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where the sum is over the nodes L(i) linked to node i and
Ny is total number of nodes linked to i. The logistic map,
which has its origins in population dynamics [25] as a
simplified model for growth in small populations and
inhibition due to overcrowding in large populations, was
used to represent the dynamics of a node since it is also an
excellent prototype for elements that can display both
chaotic and nonchaotic behavior. Consequently, the logis-
tic map is well suited for investigating generic properties of
dynamical networks.

The numerical results are obtained from a number of
runs N, where each run r has two parts. In the first part, the
diversity D is determined by starting the simulation M
times from random initial conditions each time rewiring

the network according to the requirements of the topology.
In the second part, the reproducibility R is determined by
starting the simulation M times from random initial con-
ditions without rewiring the network. Diversity and repro-
ducibility are then obtained as

Ny
Diversity D = i with rewiring. 2)

Ny—1
Reproducibility R=1— h without rewiring (3)

from the number of attractors, N4, which is given by

M
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where the matrix y consists of M columns that store a
representation of the final states of each simulation.
Columns m, which have been found to be fulfill the crite-
rium of being identical to another column, are excluded
from further consideration to exclude double counting. The
constant & is a small number (here § = 10™* was used) and
the sum i is over the column length N (generally this would
be number of nodes Ny, however, depending on the
method of representing the attractor, e.g., when coarse
graining, it can be different). Consequently, the diversity
is large when the number of different attractors is large and
reproducibility is large when the number of different at-
tractors is small. As for several topologies, there is no
natural way to define space; in all simulations, the nodes
were ordered by the number of links.

To obtain an overview of the dynamics, for each topol-
ogy, the parameters were scanned and 50 runs per parame-
ter pair were carried out. The number of different attrac-
tors was counted with the help of Eq. (4) by grouping
together nodes with an identical number of links and
averaging their dynamical variables. That is to say, the
elements of the matrix y for run r are given by yy, , =
ZNL,Txﬁ/L /N, where the sum is over all the nodes with a
given number of links N; and over an interval T[n =
transient time ... transient time + 4] of four successive
time steps since the attractors generally have four temporal
phases [17].

The results are depicted in Fig. 2, where it can be seen
that scale-free and ER-random topologies appear to com-
bine large reproducibility with high diversity rather regu-
larly, while small-world and Watts-Strogatz networks do so
only in a limited way. As can be expected, the diffusive and
hierarchical networks yield outcomes near the diagonal.
The nonlinearity o was scanned from 1.5 to 1.9 with the
lower bound between the Feigenbaum accumulation point
(a = 1.401 below which there is no chaos) and 2— 1 band-
merging point (o = 1.544), and the upper bound near the
maximum of & =2.0. The coupling strength € was scanned
from 0.5 to 0.9 with the lower bound such that remnant
chaos is sufficiently suppressed and the upper bound near
the maximum of 1.0, such that the local element still has

018702-2



PHYSICAL REVIEW LETTERS

week ending
13 JANUARY 2006

PRL 96, 018702 (2006)
T

0.6 = — 0.6 — — 0.6

04 — 04 —0.4

02 - 02 o2

L 17°[b) 1°F
PSRRI TP [P U HOY HURN THNPU P O O I
0 02 04 06 08 1 00 02 04 06 08 1.0°0 02 04 06 08 1
10—

0.0

08

Attractor Diversity

0.6

0.4

02

. N NI P R N PN O T
0.0 0.0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

0.0 (. 1

Attractor Reproducibility

FIG. 2 (color online). Attractor diversity and reproducibility
for various network topologies: (a) diffusive, (b) hierarchical,
(c) small-world, (d) Watts-Strogatz, (e) scale-free, (f) ER-
random. The system size was set to 50 nodes throughout except
for the hierarchical network where it was set to 64. The number
of simulations per part of a run was M = 250 and the transient
time was 107 time steps. The blue circles denote the area of
interest.

some effect. Therefore, with regards to attractor reproduc-
ibility and diversity, the scanned parameter region should
basically cover the interesting parameter pairs.

While Fig. 2 shows the relationship between reproduc-
ibility and diversity, it does not provide a quantitative
measure. To obtain that, the number of nodes was doubled
and the condition for classifying attractors as identical was
made more stringent by omitting the averaging over nodes
with an identical number of links. For example, by setting
yir = > pxi, for run r. This results in the attractor diversity
to be at or near its maximum. Then the reproducibility for
the parameter region was scanned as in Fig. 2 and plotted in
the histogram depicted in Fig. 3(a). The figure shows that
the scale-free topology has the highest frequency of com-
bining large diversity with large reproducibility. However,
it can also be seen that ER-random networks appear to
display this property to some degree.

As Fig. 3(a) combines all the runs of all the parameter
pairs into a single figure, it is not clear how scale-free and
random networks compare. For example, the scale-free
data could stem from many parameter pairs and the ER-
random data could be from a single pair. If so, one cannot
conclude that the combination of large diversity with high
reproducibility is more common in scale-free networks. In
order to investigate this, for the parameter pair which
yielded the highest reproducibility in Fig. 3(a) (a = 1.7,
€ = 0.9 for both the scale-free and ER-random topology),
the result of 1000 runs is depicted in Figs. 3(b) and 3(c). As
can be seen, the number of high reproducibility attractors is
much larger for scale-free networks than for ER-random
networks. This is even more so when increasing the system
size to Ny = 200 as depicted in Fig. 3(d). Consequently,
in, e.g., an evolutionary process where reproducibility is of
great importance, there should be a clear tendency towards,
and thus a dynamical advantage of, the scale-free topology
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FIG. 3 (color online). (a) Histogram depicting attractor repro-
ducibility of all the network topologies shown in Fig. 1 with the
system size increased to Ny = 100. For the topologies of
Fig. 1(a) and 1(b) none of the data falls within the plotted bin
range. (b) Histogram of the attractor reproducibility of the scale-
free and ER-random networks for the parameters in (a) that yield
the highest reproducibility, & = 1.7, € = 0.9, with the frequency
determined from 1000 runs per topology. (c) Same as (b) with
small bins in the high reproducibility region. (d) same as (b) but
with the system size increased to Ny = 200 and the frequency
determined from 1500 runs per topology.

if the underlying local dynamics can be represented by a
simple chaotic map.

Next it is investigated whether the possibility of obtain-
ing a large diversity combined with high reproducibility is
limited to a small parameter region. As in Fig. 2, a region
of parameter space is scanned, but this time the simulation
only keeps track of whether the maximal reproducibility in
200 and 50 runs is larger than 0.99 (i.e., one or two differ-
ent attractors). The outcome is plotted in Fig. 4 where the
square corresponding to a parameter pair is plotted in
yellow if the reproducibility is greater than 0.99 and blue
otherwise. As can be seen, large reproducibility with large
diversity is possible without fine tuning the parameters.

Attractors can graphically be visualized in node-
amplitude plots where the value of a node is plotted versus
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FIG. 4 (color online). Large reproducibility in the scale-free
network versus « and €. The yellow squares indicate a repro-
ducibility greater than 0.99 while the blue squares indicate a
reproducibility smaller or equal than 0.99. The number of nodes
is Ny = 100.
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FIG. 5 (color online). Single-site switchable attractors. The top
and bottom attractors can be switched by providing an input of
—1 for a few times over a short period of time at the sites

indicated by the arrows. The parameters were set to & = 1.7 and
e = 0.7, and the system size was Ny = 50.

the index of the node. As can be inferred from Fig. 2, for a
given scale-free topology, one, two, or more attractors can
coexist. Two interesting attractors are shown in Fig. 5. In
this case, the two attractors are the only two attractors, and
when starting from random initial values for each of the
nodes, the top attractor is reached roughly one third of the
time and the bottom attractor two thirds of the time. A
particularly interesting behavior of these attractors is that it
is possible to switch between the two deterministically by
applying input to single sites. This is reminiscent of
mechanisms encountered in gene circuits [26,27] like,
e.g., the toggle switch [28] or other combinatorial ap-
proaches [29] and has thus far not been observed in net-
works of chaotic nodes as described here. The sites that
lead to attractor switching have an intermediate number of
connections and an input at these sites will kick the system
off one of the attractors but not the other. As there is some
remnant chaos in the system, the effect of providing an in-
put at a single time step may not permeate through the net-
work and the system may fall back to the original attractor.
However, when the input was applied a few times over a
relatively short period of time, the attractor was always ob-
served to switch in 100 trials. Although this type of switch-
ing does not appear to be present in the majority of the two-
attractor scale-free networks, it was nevertheless common
enough to consider it a distinct class of behavior.

Even though the hierarchical network is scale free, due
to its given arrangement of nodes, there is no diversity in
node arrangements. With regards to attractor diversity and
reproducibility, the behavior is similar to that of the dif-
fusive network. Hierarchical features and modularity, how-
ever, are concepts that may play important roles in certain
networks like mass transfer in metabolism. It would there-
fore be interesting to see whether the addition of random
links or the random rewiring of some percentage of
the nodes would make it possible to recover attractor
reproducibility.

In summary, a scale-free topology appears to not only
have advantages that are direct consequences of how the

nodes are linked but also, for living systems, essential —
advantages that are indirect consequences in that it struc-
turally modifies the types of dynamics encountered. In an
evolutionary process, it would seem that networks incapa-
ble of allowing for both structural variety (diversity) and
controllable predetermined results (reproducibility) will be
less fit. For the networks investigated here, the scale-free
topology is the only topology which clearly displays these
two properties and this may therefore provide a further
reason as to why they are so common in biological systems.
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