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We find that the fractal scaling in a class of scale-free networks originates from the underlying tree
structure called a skeleton, a special type of spanning tree based on the edge betweenness centrality. The
fractal skeleton has the property of the critical branching tree. The original fractal networks are viewed as
a fractal skeleton dressed with local shortcuts. An in silico model with both the fractal scaling and the
scale-invariance properties is also constructed. The framework of fractal networks is useful in under-
standing the utility and the redundancy in networked systems.
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Emerging unifying concepts such as small-world prop-
erty [1], scale-free behavior [2], and hierarchical modular-
ity [3] now constitute our basic understanding of the
organization of complex networked systems, which appear
in such diverse examples as the World Wide Web, social
networks, and biochemical reaction networks inside cells.
The small-world property refers to the one that the average
separation (D) between pairs of vertices in the network
scales at most logarithmically in the total number of ver-
tices N in the system, (D)~ InN. Scale-free behavior
means the lack of characteristic scales in the number of
links k a vertex has, called the degree, manifesting itself in
the form of a power-law degree distribution p (k) ~ k=7
for large k. The recent discovery of fractal scaling and
topological self-similarity in the World Wide Web and
metabolic networks [4], however, raised a new perspective
on our view of such networked systems. Fractal scaling
stands for the power-law relation between the minimum
number of boxes Ny needed to cover the entire network
and the size of the boxes €,

Ny(€g) ~ €5, (1)

with a finite fractal dimension dp [5]. Self-similarity here
refers to the scale invariance of the degree distribution
under coarse graining with different box sizes (length
scales) as well as under the iterative application of coarse
graining (the network renormalization) [4,6]. It has been
observed, however, that not all networks are fractal and
most of the random network models proposed yet are not
fractal, either. This poses a fundamental question on the
origin of the fractal scaling observed in real-world net-
works [4,7-9]. In this Letter, we show that the fractal
property of the network can be understood from its under-
lying tree structure.

As highly entangled as a network looks, a more simple
structure is embedded underneath it, that is, the spanning
tree. A spanning tree is a tree composed of N — 1 edges in
a way that they connect all the N vertices in the network.
Of particular significance is the so-called skeleton [10] of a
network. The skeleton is a particular spanning tree, which
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is formed by the edges with highest betweenness central-
ities [11,12] or loads [13]. The remaining edges in the
system are called shortcuts, which contribute to forming
loops. The skeleton of a scale-free network is also scale-
free but with different y. Since the betweenness centrality
is related to the amount of information flow along a given
edge, the skeleton can be considered as the ‘“‘communica-
tion kernel”’ of the network [10]. If a network is organized
in a modular way, as it is believed to be for the World Wide
Web and biological systems, the intermodular connections
offer communication channels across the modules, thus
gaining high-betweenness centralities. By construction,
the skeleton is composed preferentially of such high-
betweenness intermodular connections, which will pre-
serve the modular structure while greatly simplifying the
complexity. Furthermore, if the modular structure is dis-
tinct enough, i.e., there is a rather clear-cut separation
between modules, we can expect that even a random
spanning tree can capture the modular structure. Thus, by
looking at the properties of its spanning trees, we can
visualize more easily the topological organization of the
network.

With the underlying skeleton and random spanning tree,
here we perform the fractal scaling analysis by measuring
Ng(£p) for several real-world networks and network mod-
els [14]. Comparison of the fractal scalings in each original
network with the corresponding spanning trees reveals
distinct patterns according to the presence or the absence
of fractality in the network. For the fractal networks, such
as the World Wide Web [Fig. 1(a)] [15], the metabolic
network of Escherichia coli [Fig. 1(b)] [16], and the pro-
tein interaction network of Homo sapiens [Fig. 1(c)] [17],
the numbers of boxes needed to cover the original network
and its skeleton are almost the same. Moreover, the random
spanning tree, while possessing a different statistics of Ny,
shows nevertheless the same fractal dimension dp. This is
surprising, because in the World Wide Web, for example,
more than 2N edges (shortcuts) are added onto the skeleton
(the average degree of the World Wide Web is 6.7), which
is a tremendous number in the graph-theoretical sense and
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(a)—(e) Box counting analysis of original networks (O, red) and their skeleton (V, blue) and random spanning tree

(A, orange). Shown are cases for (a) the World Wide Web, (b) the metabolic network of Escherichia coli, and (c) the protein
interaction network of Homo sapiens, (d) the Internet at the autonomous systems level as of the year 2004, and (e) the static model
network with y = 2.3 and (k) = 4. In (a)—(c), we also show two guidelines for the fractal scaling of the original network (black) and
its random spanning tree (gray). The slope of each guideline is (a) —4.1, (b) —3.5, and (c) —2.3. In (d)—(e), the black line is a fit to the
exponential function and the gray one is to a power law. (a’)—(e’) Branching analysis. The mean branching number as a function of
distance from the root for the skeleton (V, blue) and the random spanning tree (A, orange) of the networks in (a)—(e). For (a')—(c’),
both the skeleton and the random spanning tree fulfill the criticality condition {(m) = 1 (horizontal line) as the distance from the root
increases, while for (d’)—(e’), the mean branching number of the skeleton decays to zero with no plateau at (m) = 1.

by no means a minute perturbation. Such a robustness of
fractal scaling in the World Wide Web shows that, even
though the network is far from being a tree, the shortcuts
are distributed in a way that they preserve the fractality and
modularity. In other words, shortcuts are present mainly
inside modules and the connections between different
modules are made largely through the skeleton. This topo-
logical structure can be measured by the fraction of intra-
branch shortcuts among the total number of shortcuts, a
branch being the subtree connected to the most connected
vertex. We find that the ratio is 0.78, 0.33, and 0.45 for
Figs. 1(a)-1(c), respectively. On the other hand, other
networks exhibit different features in the fractal scaling
analysis. For example, in the Internet autonomous systems
[Fig. 1(d)] or the static model with y = 2.3 and (k) = 4
[Fig. 1(e)], the box counting number of the original net-
work and the skeleton decays with €z much faster than that
of the random spanning tree, and the fraction of intra-
branch shortcuts is small: 0.087 for Fig. 1(d) and 0.015
for Fig. 1(e). Also for social networks, such as the actor
network and the collaboration network, the Nz(€5) curves
are appreciably different from those of the skeletons, im-
plying that the global topology of the social network is
highly interwoven on a large scale to form a more compact
structure [18].

The scaling behavior of the box counting relation Eq. (1)
in Figs. 1(a)-1(c) for the original network and its skeleton
suggests that the fractal property of the network originates
from that of the skeleton. In addition, we argue here that
the criticality in the topology of the skeleton is required for

a network to be a fractal: The tree structures, such as the
skeleton and the random spanning tree, may be seen as
generated through a multiplicative branching process start-
ing from a root vertex [19]. At each branching step, each
vertex born in the previous step generates m offsprings
with probability b,,. The criticality condition means the
average branching number

my="3 mby = 1. @
m=0

Thus, the branching tree grows perpetually with offspring
neither flourishing nor dying out. In this case, when b, ~
m~7, the number of vertices s in the tree scales with its
linear size ¢ in a power-law form as s ~ #*, with z = (y —
1)/(y —2)for2 <y <3andz = 2 fory >3[19,20], and
the tree structure is fractal with fractal dimension dg = z.
Such a critical branching tree is similar in the topological
characteristics to the homogeneous scale-free tree network
proposed in Ref. [21]. To check the validity of our sugges-
tion, we examine if the criticality condition is fulfilled for
the skeleton and the random spanning trees of the four real-
world networks and the static model in Figs. 1(a’)—1(¢e’).
Indeed, for the fractal networks [Figs. 1(a’)—1(c’)], both the
skeleton and the random spanning tree fulfill the criticality
condition, even though in reality, the dynamic origins of
their formations may well be more complicated than the
pure branching dynamics. In our analysis, the root is taken
as the most connected vertex in the tree. On the other hand,
for nonfractal networks, the mean number of branches of
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the skeleton decays to zero rapidly as the distance from the
root increases [see Figs. 1(d’) and 1(e’)]. A similar behav-
ior is observed for the actor network as well [18]. Thus, the
actor network is not a fractal. However, the random span-
ning tree satisfies the criticality condition in all cases,
suggesting the generic fractal structure of this kind of trees
as shown in Ref. [22]. In short, a fractal network contains a
fractal skeleton underneath it, which is perturbed by local
shortcuts, thus preserving its fractal property.

Incorporating all the findings so far, we set up a fractal
network model. The model is based on the multiplicative
branching tree [19]. We first introduce an exponent 7y for
the branching probability b,, ~ m~7 (m = 1), designed to
produce the desired power-law degree distribution p (k) ~
k™7, with y > 2. The branching probability is properly
normalized to be critical; i.e., it satisfies Eq. (2). Next a
parameter p is introduced to control the number of short-
cuts added and, hence, the mean degree of the network.
One final parameter g accounts for the relative frequency
of the local and the global shortcuts. The construction of
the model network proceeds as follows: (i) A tree is grown
by the multiplicative branching rule with branching proba-
bility b,,. (i) After the branching process, every vertex
increases its degree by a factor p and attempts to make
shortcuts to its local neighbors. (iii) For each successful
shortcut in (ii), with probability ¢, we replace it by recon-
necting it to a randomly chosen vertex, not restricted to its
local neighbors. In the latter case, we choose the vertex
with a weight in proportion to its degree in the branching
tree, so as to maintain the same power-law scaling of the
degree distribution. This rule is schematized in Fig. 2(e)
[18]. Figure 2(a) is an illustrative example of a branching
tree of size N = 164 and y = 2.3. The vertices of the tree
are colored according to which box they belong to in a
particular box-covering with €z = 2. For such a tree, even
a simple graph drawing algorithm, such as Pajek [23], can
capture its inherent hierarchical structure. Figure 2(b)
shows the fractal network structure with the addition of
local shortcuts, where we use p = 0.5 and ¢ = 0. The
hierarchical modular structure presented in the tree net-
work [Fig. 2(a)] persists. On the other hand, the network
with ¢ = 1 shown in Fig. 2(c), in which the same number
of shortcuts as in Fig. 2(b) are attached, does not retain the
modularity. Such an absence of modularity can be readily
seen in Fig. 2(d), a different layout of the same network as
Fig. 2(c) generated by Pajek in an unsupervised manner.
Consequently, the fractal property is preserved in the case
of g = 0, whereas it is not for ¢ = 1, as is clearly revealed
by the box counting analysis in Fig. 2(f).

It is noteworthy that there exists an important distinction
between the present model and other scale-free trees such
as the Barabasi-Albert tree [2] and the geometrically grow-
ing scale-free tree [24]. Such models are not fractal, be-
cause they do not fulfill the criticality condition. Indeed,
their mean branching rate decreases to zero monotonically

FIG. 2 (color). Fractal network model. (a) Uncorrelated scale-
free tree with the degree exponent y = 2.3 and the number of
vertices N = 164. It is grown by the multiplicative branching
rule [19], with the branching probability b,, ~ m~?. (b) Fractal
model network created by adding local shortcuts (green) to the
tree in (a). (c) A nonfractal model network created by adding
random shortcuts (blue) allowing global connection. (d) The
generic configuration of the network in (c) generated by Pajek,
and the absence of inherent modular structure. In (b)—(d), the
color of each vertex is that of the corresponding vertex in (a).
(e) Schematic illustration of the growth rule of the fractal net-
work model. The shaded region indicates the rest of the network
generated so far. (f) The fractal scaling analysis of networks with
larger size N = 311,043, constructed in the same manner as
those in (a)—(c). Squares (blue) correspond to the fractal net-
work model in (b) with p = 0.5, circles (black) to its skeleton,
and the diamonds (red) to the nonfractal network model in (c)
with ¢ = 1. The solid line is the guideline with slope = —2.8.

as the branching proceeds, without a plateau at (m) = 1
[18]. Such a type of tree network was classified as
“causal’ trees in Ref. [25]. Note also that the fractal trees
are not small worlds. However, with a small number of
global shortcuts, e.g., ¢ = 0.01 in our model with N ~ 3 X
10°, the network turns into a small world. This is seen in
the mean box mass versus €5 plot in the cluster growing
method analysis [18].
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The fractal network model is self-similar. To check it,
we perform the coarse graining through the box counting
method by replacing each box with a single supernode and
connecting them if any of their member vertices are con-
nected [4]. We find that the degree distribution of the
fractal network model is invariant under the coarse grain-
ing by the boxes with different sizes. In addition, the
degree distribution is invariant under successive applica-
tions of the coarse-graining transformation [18]. It is in-
teresting to note that some networks are self-similar, that
is, exhibit the scale-invariant degree distribution, yet are
not fractal. A typical example of such networks is the
Internet [18]. So fractality and self-similarity do not always
imply each other in complex networks.

The framework of a fractal network is helpful to under-
stand, for example, the utility and the redundancy in the
metabolic networks from a purely topological aspect. The
high flux backbone in the metabolic network of E. coli
obtained through the flux balance analysis was shown to
be composed of many branches with few interbranch con-
nections and to merge into the biomass reaction [26].
Obviously, its topological shape resembles the branching
tree skeleton rooted from a vertex with the largest number
of connections if the direction in edge is ignored. On the
other hand, recent in silico flux analysis [27] has shown
that the metabolic network of E. coli contains a high den-
sity of backup reactions (redundancies) for a given condi-
tion. Such a reaction is barely used in the normal condition
but takes up a high flux when a certain reaction on the
backbone is blocked. When the simultaneous blockade of
such a reaction pair blocks biomass production, they are
called synthetic lethal [28]. Most synthetic lethal reactions
are located very close to each other, being apart in three
reaction steps or less along the metabolic network. Also
they are mostly in the same functional category. Thus, the
reactions with high (low) flux in a wild type can be re-
garded as the edges on the skeleton (shortcuts) in the
framework of the fractal network.

The critical branching tree that can be found in various
phenomena, such as earthquake processes, population and
biological dynamics, epidemics, social cascades, etc., also
appears in the skeleton of fractal networks, as we found
here. While the evolving process of the fractal networks
would be complex and diverse depending on the specific
systems, the underlying structure, the skeleton, has the
topology of the critical branching tree. Identifying such a
simple structure underneath is a step forward towards
further studies on renormalization and universality in com-
plex networks.
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