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Propagation of Firing Rate in a Feed-Forward Neuronal Network
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Propagation of the firing rate and synchronous firings in a 10-layer feed-forward neuronal network are
studied. When neurons in layer 1 are subject to white noise, synchrony can be built up in deep layers and
the firing rate can be propagated. A network with 6 layers is found to be enough for such behavior. A
periodic signal with frequencies of 30–80 Hz can be selectively transmitted through the network. These
abilities in information processing due to synchrony can be modulated by noise and the operating mode of
neurons, and our results are relevant to experimental findings.
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FIG. 1. (a) The model of a 10-layer feed-forward network with
200 neurons in each layer. Each neuron receives 20 inputs from
the previous layer. (b)–(g) Dot-raster plots showing the firing
patterns in different layers for D1 � 3 and Ds � 0. Each row of
dots represents a spike train for a single neuron with index 1 �
j � 200. A synchrony means that all (or almost all) 200 neurons
fire spikes about simultaneously.
Neurons fire spikes when the total dendritic inputs reach
a threshold, and information is encoded in the spike trains.
There are two kinds of encoding mechanisms, namely, the
firing rate and the spike timing. The firing rate encodes
information by the numbers of spikes in time bins, which is
an averaged effect [1]. Differently, the spike timing enc-
odes information via precise locations of spikes, which is
of a spatial-temporal scheme [2]. In nervous systems, every
informational processing is related to many functional
groups of neurons by which information is transferred
from one group to its next groups [1]. Thus an interesting,
but not well studied, model of network is multilayer feed-
forward. It was found that synchronous firings can be
propagated in a stable manner through such a network
under appropriate conditions [3]. It was also shown that
firing rates of deep layers seem to be independent of the
input firing rate in an integrate-and-fire model [4]. Then
propagation of the rate code in a feed-forward network was
argued to be almost impossible [4]. However, this may be
neuronal model dependent since experiments showed that
synchronous firings can be formed and the firing rate can
be propagated [5], implying that synchrony plays an im-
portant role in the rate coding scheme. Thus, it still needs to
clarify what mechanism leads to the synchrony and how
the firing rate is propagated in the multilayer network.

Here, we report a study on a 10-layer feed-forward
network. The Hodgkin-Huxley (HH) neurons are used
since they model firings more realistically. When back-
ground noise is delivered only to the neurons of layer 1,
synchronous firings can be built up gradually layer by
layer. The output rate strongly depends on the input rate,
showing propagation of firing rate in the network. This can
be modulated by the operating mode of the neurons de-
pending on the synaptic time constant. It is found that a
network with 6 layers is enough for such propagation. Thus
we show that synchrony can be developed and the firing
rate can be propagated in a multilayer feed-forward neuro-
nal network. This is relevant to the propagation of the rate
signal, consistent with experimental findings [5]. Our
model is the first one to study the related behaviors, and
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our work provides a theoretical interpretation of the
synchrony-based code of the firing rate.

A 10-layer feed-forward network with N � 200 HH
neurons in each layer is constructed. Each neuron ran-
domly receives synaptic inputs from about 20, i.e., 10%,
neurons in the previous layer. There are no couplings
between the neurons within the same layer [Fig. 1(a)].
The dynamical equations for the network are [6]

Cm
dVi;j
dt
� �gNam

3
i;jhi;j�Vi;j � VNa� � gKn

4
i;j�Vi;j � VK�

� gl�Vi;j � Vl� � I0 � I
syn
i;j �t� � �i;j�t�; (1)
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FIG. 2. (a) Coherence measure Ki versus layer i for Ds � 0
and different noise intensities D1. (b) Firing rate ri versus layer i
for Ds � 0 and different noise intensities D1. (c) Firing rate ri
versus layer i for D1 � 3, Ds � 0, and different time constants
of the synaptic input �: 2 ms (
), 2.5 ms (5), 3 ms (*), 4 ms (�),
5 ms (+), 6 ms (4), 7 ms (�), 8 ms (�). (d) Iout

2 �t� as a function
of time for D1 � 3 and Ds � 0. (e) The synaptic input current
A3�t� of layer 3 as a function of time. (f) The dot-raster plot of
firings for the neurons in layer 3.
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with dmi;j=dt � �m�Vi;j��1�mi;j� � �m�Vi;j�mi;j, dhi;j=
dt � �h�Vi;j��1� hi;j� � �h�Vi;j�hi;j, and dni;j=dt �
�n�Vi;j��1� ni;j� � �n�Vi;j�ni;j. Here V;m; h, and n are
the membrane potential, the activation and inactivation of
the sodium current, and the activation of the potassium
current, respectively. VNa; VK; Vl are the reversal potentials
of the sodium, potassium, and leakage currents. gNa; gK; gl
are the related maximum conductance. Cm is the mem-
brane capacity. Values of all these parameters and func-
tions �m�V�, �h�V�, �n�V�, �m�V�, �h�V�, and �n�V� can
be found in Ref. [6]. I0 � 1 �A=cm2 is a constant bias.
The layer indices are i � 1; . . . ; 10, and the neuron indices
are j � 1; . . . ; 200. The Gaussian white noise �i;j�t� sat-
isfies h�i;j�t�i � 0 and h�i;j�t1��i;m�t2�i � 2Di�j;m��t1 �
t2�. Here Di is referred to as the noise intensity of layer i
with D1 and Ds � D2 � � � � � D10. The synaptic in-
put from layer �i� 1� to the neurons in layer i is Isyn

i;j �t� �

�N�1
i;j
PNi;j
p�1 gsyn��t� ti�1;p��Vi;j � Vsyn� with ��t� �

�t=��e�t=�. Ni;j is the number of neurons in layer �i� 1�
coupled to the �i; j�th neuron with synaptic weight gsyn �

0:6. The synaptic reversal potential Vsyn � 0 implies that
all the couplings are excitatory. ti�1;p is the firing time of
the pth presynaptic neuron in layer �i� 1� coupled with
neuron �i; j�. The rising time of the synaptic input � is set to
2 ms unless specified elsewhere. Firings of each neuron are
recorded and converted into a time series of standard pulses
Uj � UA or UB with UA � 1 of width 2 ms and UB � 0
corresponding to the firing and nonfiring states. The output
of layer i is Iout

i �t� � N�1 PN
j�1 Uj�t�. Numerical integra-

tion of Eq. (1) is done by a second-order stochastic algo-
rithm [7]. The firing rate of each layer is obtained by
averaging over all the neurons in this layer within a long
time window of 20 s.

Now, let us report the results for a case of noise input
only to layer 1, i.e., D1 � 0 and Ds � 0. Since the inputs
are white noise, each neuron in layer 1 fires spikes irreg-
ularly [Fig. 1(b)]. In layer 2 and layer 3 [Fig. 1(c) and 1(d)],
the numbers of spikes decrease, implying that the firing
rate decreases. However, there is a tendency of synchrony,
and several blurry columns of spikes appear in the firing
pattern in layer 2. This becomes clear in layer 3 where there
are several distinct columns of firings. From layer 5
[Figs. 1(e)–1(g)], the synchrony is well established and
can be quantified by a coherence measureKi [8]. HereKi is
obtained by averaging the pair coherence Ki;jm��� between
neurons j andm over all neuronal pairs in layer i, i.e.,Ki �
�N�N � 1�	�1 PN

j�1

PN
m�1;j�m Ki;jm���. The pair coher-

ence Ki;jm��� �
Pk
l�1 X�l�Y�l�=�

Pk
l�1 X�l�

Pk
l�1 Y�l�	

�1=2

is measured by the cross correlation of spike trains at
zero time lag within a time bin �. A long time interval T �
5 s is divided into k bins of � � 1 ms, and two spike trains
for neurons j and m are given by X�l� � 0 or 1 and Y�l� �
0 or 1 with l � 1; 2; . . . ; k (here T=k � �). Figure 2(a)
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shows that the degree of synchrony increases and is satu-
rated to K � 1 at layer 8. Note that such a development of
synchrony is really related to the experimental observation
in Ref. [5] where neuronal firings in iteratively constructed
networks in vitro are asynchronous for the first 2–3 layers
but become progressively more synchronous in successive
layers [cf. Fig. 2(a) in Ref. [5] ]. The saturation of the
coherence measure K at layer 8 is the same as that of the
area of the cross-correlation histogram peak since the area,
which also quantifies the synchrony, increases sigmoidally
with layer and is saturated at layer 8 too [5].

The underlying mechanism can be interpreted as fol-
lows. The membrane time constant of neurons, Cm=gl �
3:3 ms, is larger than the rising time of synaptic inputs � �
2 ms. Each synaptic input results in a fast change of the
membrane potential. Thus, all neurons in the network
operate as coincidence detectors [9] and are sensitive to
the exact timing of synaptic inputs. Since all neurons in the
same layer have basically the same magnitude of synaptic
inputs due to the correlation between the neurons of two
neighboring layers, the fast changes of potentials make the
neurons fire synchronously. It can be seen clearly from the
output of layer-i Iout

i �t� where the peaks generate large
transient synaptic inputs Ai�1�t� � N�1 PN

j�1 I
syn
i�1;j�t� to

layer �i� 1�. These inputs may be larger than the threshold
of the neurons and effectively trigger the firings. An ex-
ample of such a synaptic effect is shown in Figs. 2(d)–2(f),
and all the main peaks in layer 2 [Fig. 2(d)], the large
synaptic current [Fig. 2(e)], and the firings in layer 3
3-2
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FIG. 3. Firing rate ri versus the input firing rate rin for � �
3 ms and Ds � 0. The dashed line is for ri � rin.

0 20 40 60
0

20

40

60

(a)

  τ=5ms
  τ=4ms
  τ=3ms
  τ=2ms

r 2

r
in

 

0 20 40 60
0

20

40

60

 

(b)

r 4

r
in

0 20 40 60
0

20

40

60

(c)

r 6

r
in

 

 

0 20 40 60
0

20

40

60

 

(d)

r ou
t

r
in

 

FIG. 4. Firing rate r2 of layer 2 (a), r4 of layer 4 (b), r6 of
layer 6 (c), and rout, i.e., the output rate of the network (d) versus
the input rate rin. The dashed line is for ri � rin.
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[Fig. 2(f)] are clearly related. Note that small peaks gen-
erate only small responses in the synaptic currents at
layer 3, which may not be enough to fire the neurons or
may lead only to sparse firings. These cannot effectively
trigger the postsynaptic neurons in the next layer to fire,
and thus the sparse firings disappear gradually in the next
layers. In contrast, the packets of synchronous firings
survive and develop.

The firing rate decreases in the first three layers, and then
increases to a saturated value except for cases of very small
noise [Fig. 2(b)]. This is also similar to the experimental
measurements [cf. Fig. 6(b) in Ref. [5] ]. The saturated
values are different for different noise intensities. From
layer 1 to layer 3, the firing rate decreases because the
numbers of filtered firings are quite large. Differently, from
layer 5 to layer 10, the firing rate increases and is finally
saturated to a value since the synchronous firings can be
propagated stably and the sparse firings almost disappear.
Because the firings of spikes are quite sparse in layer 1 for
the case of small noise D1 � 2, the synchrony in later
layers hardly occurs and the firing rate cannot be propa-
gated in the network. Thus the occurrence of synchronous
firings in the first several layers depends on the firing rate
of layer 1, termed the input rate rin. As a result, the firing
rate of layer 10, termed the output rate rout, depends on the
input rate. This means a propagation of the rate signal as
long as the noise intensity is large enough. Such a propa-
gation of the firing rate through the network occurs due to
the synchronous firings that result from the correlation
between the neurons. Note that the input rate rin and the
output rate rout are the same only when the noise intensity
is about D1 � 5–10 although the synchrony is robust to
various values of noise intensity.

Interestingly, the propagation of the firing rate can be
controlled by modulating the operation mode of neurons,
i.e., by changing the synaptic time constant �, which
enables the neurons sensitive to the change of synaptic
inputs. Figure 2(c) shows results for various values of the
time constant �. It is found that the most optimal time
constant for the propagation is about � � 2:5–4 ms, and
the best one is � � 3 ms with which the input firing rate rin

can be exactly propagated. Beyond this region, the firing
rate is hardly propagated. For a small time constant, such
as � < 2 ms, the change of the synaptic input is so fast that
the neurons cannot fire following every change of the
synaptic current. As a result, the neurons working as
coincidence detectors may miss some synaptic current,
implying that the firing rate is low. When � > 6 ms, since
the variation of the synaptic current is quite slow, the
neurons, operating as temporal integrators [9], could not
sum up enough synaptic current to reach their threshold for
firing. Thus the neurons do not fire spikes effectively, and
the firing rate is low or the temporal patterns are propa-
gated with low reliability [10].

A plot of the firing rate ri of layer i versus the input rate
rin clearly shows the variation of the firing rates (Fig. 3). It
01810
is seen that the firing rates of these layers depend on the
input rate rin. The firing rate r2 shows basically a linear
increasing as the input rate rin increases when rin > 10,
while the firing rates r4, r6, and rout versus rin have a
sigmoid increasing. That is, after layer 4, the firing rate
ri increases rapidly when the input firing rate rin > 20, and
almost becomes saturated when rin > 55. Especially the
values of r6 and rout are almost the same, and even the rate
gain ri=rin can be larger than 1 when rin > 25 since the
synchrony is well built up after layer 5. These really imply
the propagation of the input firing rate. Importantly, such
variation of the firing rate ri versus rin depends on the time
constant � (Fig. 4). For different values of �, the values of
r2 are almost the same [Fig. 4(a)]. The firing rates of
layer 4, layer 6, and layer 10 show a nonlinear dependence
on rin, and an optimized time constant � � 3 ms can be
obtained. Moreover, a range of rin values with the rate gain
ri=rin > 1 is zero for layer 4 [Fig. 4(b)], and is from rin �
25 to 60 for layer 6 and layer 10 [Figs. 4(c) and 4(d)] when
� � 3 ms, respectively. For low values of �, such a range is
narrow or even disappears. In addition, because the syn-
chrony develops very well about in layer 6, all the curves of
the firing rate versus the input rate rin for layer 6 are almost
the same as those for layer 10 [Figs. 4(c) and 4(d)]. That is,
3-3
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the firing rate ri with i > 5 converges to the output of the
network rout. This indicates that a network with 6 layers is
enough for the propagation of the firing rate if the neurons
work in an optimized firing mode with time constant � �
3 ms.

As discussed above, synchrony is the default state in the
feed-forward network. Let us consider a more realistic case
with white noise injected to all the neurons of the network.
As shown in Fig. 5(a), the degree of synchrony decreases as
the noise intensity Ds increases. This is reasonable since
stronger noise, of course, introduces more random input to
the neurons. What role does the synchrony play in signal
transmission, such as for a periodic subthreshold signal
A cos�2�fst� with amplitude A � 1 and frequency fs sub-
jected to each neuron in layer 1? Figure 5(b) shows the
signal-to-noise ratio (SNR) [11] for various layers versus
the frequency of the signal. As the layer index increases,
the values of SNR decrease. But at layer 7 the values of
SNR become saturated, which is relevant to the saturation
of the synchrony and the firing rate. There is a most
sensitive range of 30–80 Hz in which the signal can be
transmitted more efficiently and the firings are well syn-
chronized. This phenomenon is a consequence of the na-
01810
ture of the HH neurons themselves [12]. Obviously,
synchrony encodes the signal with high precision, improv-
ing the signal transmission within the network. In addition,
such a sensitive range is really relevant to the 40 Hz
oscillations in nervous systems due to the multilayer fea-
ture [13,14].

In conclusion, synchronous firings can develop gradu-
ally within a feed-forward multilayer network, and help the
propagation of firing rate and temporal signal in the net-
work. The output rate depends on the input rate, resulting
from the dependence of the occurrence of synchronous
activities in the first several layers on the input rate.
These can be modulated by the operating mode of neurons,
which may be lacking for some simplified neuronal mod-
els. A most sensitive region of frequencies is found, show-
ing a preference to the periodic signal.

This work is supported by the NSF of China (under
Grant No. 10021001) and the Nonlinear Project (973).
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