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Aeolian Transport Layer
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We investigate the airborne transport of particles on a granular surface by the saltation mechanism
through numerical simulation of particle motion coupled with turbulent flow. We determine the saturated
flux qs and show that its behavior is consistent with classical empirical relations obtained from wind
tunnel measurements. Our results also allow one to propose and explain a new relation valid for small
fluxes, namely, qs � a�u� � ut��, where u� and ut are the shear and threshold velocities of the wind,
respectively, and the scaling exponent is � � 2. We obtain an expression for the velocity profile of the
wind distorted by the particle motion due to the feedback and discover a novel dynamical scaling relation.
We also find a new expression for the dependence of the height of the saltation layer as a function of the
wind velocity.
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FIG. 1. Schematic representation of the setup showing the
mobile wall at the top, the velocity field at different positions
in the y direction, and the trajectory of a particle stream (dashed
line). At the collision between this stream and the static wall at
the bottom, we consider that the particles rebound to the air flow
at an ejection angle �, with only a fraction r of their original
kinetic impact energy.
The transport of sand by wind is a major factor in sand
encroachment, dune motion, and the formation of coastal
and desert landscapes. The dominating transport mecha-
nism is saltation as first described by Bagnold [1], which
consists of grains being ejected upwards, being accelerated
by the wind, and finally impacting onto the ground pro-
ducing a splash of new ejected particles. Reviews are given
in Refs. [2,3]. Quantitatively this process is, however, far
from being understood.

Because of Newton’s second law, the wind loses more
momentum with increasing number of airborne particles
until a saturation is reached. The maximum number of
grains a wind of given strength can carry through a unit
area per unit time defines the saturated flux of sand qs. This
quantity has been measured by many authors in wind
tunnel experiments and on the field, and numerous empiri-
cal expressions for its dependence on the strength of the
wind have been proposed [4–9]. In previous studies theo-
retical forms have also been derived using approximations
for the drag in turbulent flow [10,11]. All these relations
are expressed as polynomials in the wind shear velocity u�
which are of third order, under the assumption that the
grain hopping length scales with u� [4,5,10–12] and oth-
erwise can be more complex [6]. The velocity profile in a
particle laden layer has also been the object of measure-
ment [13,14] and modelization [15]. Surprisingly, how-
ever, very few measurements of the height of the salta-
tion layers as a function of u� have been reported [16], and
no systematic data close to the threshold are available. The
complete analytical treatment of this problem remains out
of reach not only because of the turbulent character of the
wind, but also because of the underlying moving boundary
conditions in the equations of motion. More recently, a
deterministic model for aeolian sand transport without
height dependency in the feedback has been proposed
[17] in which grains of high (saltons) and low (reptons)
energy coexist. Despite much research in the past [18],
there remain many uncertainties about the trajectories of
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the particles and their feedback with the velocity field of
the wind. It is this challenge that motivated the present
work and led us to discover a scaling relation for the
distortion of the velocity profile.

We present the first numerical study of saltation that
solves the turbulent wind field and its feedback with the
dragged particles. As compared to real data, our values
have no experimental fluctuations either in the wind field or
in the particle size. As a consequence, we can determine all
quantities with higher precision than ever before, and
therefore with a better resolution close to the critical
velocity at which the saltation process starts.

In order to get quantitative understanding of the layer of
airborne particle transport above a granular surface, we
simulate the situation inside a two-dimensional channel
with a mobile top wall as schematically shown in Fig. 1.
We impose a pressure gradient between the left and the
right sides. Gravity points down, i.e., in the negative y
direction. The y dependence of the pressure drop is ad-
justed in such a way as to ensure a logarithmic velocity
profile along the entire channel in the case without parti-
cles, as it is expected in fully developed turbulence [19].
More precisely, this profile follows the classical form
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FIG. 2. Typical trajectories of particles computed for
u� < ut (solid line) and u� > ut (dashed line).

PRL 96, 018001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JANUARY 2006
ux�y� � �u�=�� ln�y=y0�; (1)

where ux is the component of the wind velocity in the x
direction, u� is the shear velocity, � � 0:4 is the
von Karman constant, and y0 is the roughness length that
is typically between 10�4 and 10�2 m. The upper wall of
the channel is moved with a velocity equal to the velocity
of the wind at that height in order to ensure a nonslip
boundary condition.

The fluid mechanics inside the channel is based on the
assumptions that we have an incompressible and
Newtonian fluid flowing under steady-state and homoge-
neous turbulent conditions. The fluid is air with viscosity
� � 1:7894� 10�5 kg m�1 s�1 and density � �
1:225 kg m�3. The Reynolds-averaged Navier-Stokes
equations with the standard k� � model are used to de-
scribe turbulence. The numerical solution for the velocity
and pressure fields is obtained through discretization by
means of the control volume finite-difference technique
[20,21]. The integral version of the governing equations is
considered at each cell of the numerical grid to generate a
set of nonlinear algebraic equations that are pseudolinear-
ized and solved. The criteria for convergence used in the
simulations are defined in terms of residuals, i.e., a mea-
sure of the degree to which the conservation equations are
satisfied throughout the flow field. In our simulations con-
vergence is achieved only when each of the normalized
residuals falls below 10�6.

After having produced a steady-state turbulent flow, we
proceed with the simulation of the particle transport along
the channel. Assuming that drag and gravity are the only
relevant forces acting on the particles, their trajectory can
be obtained by integrating the following equation of mo-
tion:

dup
dt
� FD�u� up� � g��p � ��=�p; (2)

where up is the particle velocity, g is gravity, and �p �
2650 kg m�3 is a typical value for the density of sand
particles. The term FD�u� up� represents the drag force
per unit particle mass where

FD �
18�

�pd
2
p

CD Re

24
; (3)

dp � 2:5� 10�4 m is a typical particle diameter, Re 	
�dpjup � uj=� is the particle Reynolds number, and the
drag coefficient CD is taken from empirical relations [22].
Each particle in our calculation represents, in fact, a stream
of real grains. It is necessary to take into account the
feedback on the local fluid velocity due to the momentum
transfer to and from the particles. Specifically, this cou-
pling effect is considered here by alternately solving the
discrete and continuous phase equations until the solutions
in both phases agree. The momentum transfer from one
phase to another is computed by adding the momentum
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change of every particle as it passes through a control
volume [21],

F �
X

particles

FD�u� up� _mp�t; (4)

where _mp is the mass flow rate of the particles and �t the
time step. The exchange term Eq. (4) appears as a sink in
the continuous phase momentum balance.

In Fig. 1 we see the trajectory of one particle stream and
the velocity vectors along the y direction. Each time a
particle hits the ground it loses a fraction r of its energy,
and a new stream of particles is ejected at that position with
an angle �. The parameters r � 0:84 and � � 36
 are
chosen from experimental measurements [23,24]. We
also studied other values for r and � and even considered
a continuous distribution of ejection angles. As expected,
the choice of unrealistic values produces unphysical re-
sults. More details will be given in Ref. [25].

If u� is below a threshold value ut, the energy loss at
each impact prevails over the energy gain during the ac-
celeration through drag and particle transport comes to a
halt as illustrated in Fig. 2. Only for u� > ut is steady sand
motion achieved. The resulting flux is given by

q � _mpnp; (5)

where np is the number of particle streams released. The
first added particle streams are strongly accelerated in the
channel, and their jumping amplitude increases after each
ejection until a maximum is reached as seen in Fig. 2. The
more particles are injected the smaller is this final ampli-
tude. Beyond a certain number np of particle streams, the
trajectories, however, start to lose energy and the overall
flux is reduced. This critical value np characterizes the
saturated flux qs through Eq. (5).

In Fig. 3 we see the plot of qs as a function of the wind
velocity u�. Clearly, there exists a critical wind velocity
threshold ut below which no sand transport occurs at all.
This agrees well with experimental observations [1,5].
Also shown in Fig. 3 is the best fit to the numerical data
using the classical expression proposed by Lettau and
Lettau [5],
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FIG. 4. Profile of the velocity difference ux�0� � ux�q� for
different values of the flux q at u� � 0:51. The inset shows
the data collapse of these data obtained by rescaling the velocity
difference with the corresponding q.
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FIG. 3. Logarithmic plot of the saturated flux qs as a function
of u�. The dashed line is the fit using the expression proposed by
Lettau and Lettau [5], qs / u2

��u� � ut�, with ut � 0:35� 0:02.
The solid line corresponds to Eq. (7) and the dash-dotted line to
Bagnold’s relation, qs / u3

� [4]. The results shown in the inset
confirm the validity of the power-law relation Eq. (7), qs /
�u� � ut�

2, with the critical point given by ut � 0:33� 0:01.
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qs � CL
�
g
u2
��u� � ut�; (6)

where CL is an adjustable parameter. We find rather good
agreement using fit parameters of the same order as those
of the original work [5] and a threshold value of ut �
0:35� 0:02. This is, in fact, to our knowledge, the first
time a numerical calculation is able to quantitatively re-
produce this empirical expression, and it confirms the
validity of our simulation procedure. Other empirical rela-
tions from the literature [10–12] can also be used to fit
these results. In Fig. 3 we also show that for large values of
u� asymptotically one recovers Bagnold’s cubic depen-
dence. Close to the critical velocity ut interestingly we
find that a parabolic expression of the form

qs � a�u� � ut�2 (7)

fits the data better than Eq. (7), as can be seen in Fig. 3 and,
in particular, in the inset. The quadratic law of Eq. (7) can
be understood by noticing that the shear stress at the
ground should be decomposed into a dynamical and a
turbulent part, � � �d � �T , the first being proportional
to �u� and the second proportional to��u� � ut�, where �
and � are the dynamical and the turbulent viscosities. In
the limit u� � ut one obtains the classical behavior of
Bagnold [4], as verified by the dash-dotted line in Fig. 3
and which is consistent with Refs. [5,10–12]. The limit
u� � ut, however, yields the quadratic relation for the flux
given in Eq. (7). Physically this is due to the fact that close
to ut the laminar component cannot be neglected.

The velocity profile of the wind within the layer of grain
transport is experimentally much more difficult to access
than the flux. This profile clearly deviates from the undis-
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turbed logarithmic form of Eq. (1) because of the momen-
tum the fluid must locally exchange with the particles. In
Fig. 4 we show the loss of velocity with respect to the
logarithmic profile without particles of Eq. (1) for different
values of q as a function of the height y. As clearly seen in
Fig. 4, the loss of velocity is maximal at the same height
ymax, regardless of the value of flux q. Except for large
values of the flux, dividing the velocity axis by q one can
collapse all the profiles quite well on top of each other, as
can be verified in the inset of Fig. 4.

The position ymax of the height of maximum loss de-
pends essentially linearly on u� as shown in Fig. 5. This is
consistent with the observation that the saltation jump
length is proportional to u� [11]. The proportionality con-
stant obtained from the best linear fit to the data is 0.35 s.
Quantitatively the data in Fig. 5 also fit very well into the
experiment data plots of Ref. [16] and are consistent with
the analytical arguments of Ref. [11]. By extrapolation to
ymax � 0, we obtain an alternative estimate for the thresh-
old velocity, ut � 0:35 m=s, that is consistent with the
values calculated before from the fits to the data using
Eqs. (6) and (7).

Whoever has been in the desert or on a beach during a
very windy day knows that the saltation process in nature
looks like a sheet of particles floating above ground at a
certain height ys, which strongly depends on the wind
velocity. This height corresponds to the position of the
largest likelihood to find a particle as obtained from the
maximum of the density profile of particles as a function of
height y. Figure 5 implies that the profile of velocity
difference of the wind has a minimum at a similar height,
which is consistent with the maximal loss of momentum.
Within the error bars our results, in fact, yield that ys
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FIG. 5. Height ymax of the maximum loss of velocity as a
function of u�. The height ys of the largest probability to find
a particle coincides with ymax. The solid line corresponds to the
best linear fit to the data with a slope equal to 0.35. By
extrapolation, the intercept with the x axis provides an alter-
native estimate for the critical point, ut � 0:35 m=s, that is
consistent with the other calculations.
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coincides with the values of ymax in Fig. 5. It is important to
note that both heights, ymax and ys, also have the same
linear dependence on u�.

We have shown in this Letter results of simulations
giving insight about the layer of granular transport in a
turbulent flow. The lack of experimental noise allows for a
precise study close to the critical threshold velocity ut that
leads us to a parabolic dependence of the saturated flux. In
addition, we show that the velocity profile disturbed by the
presence of grains scales linearly with the flux of grains,
except close to saturation. Notably a characteristic height
appears at which the momentum loss in the fluid and the
grain density are maximized. Moreover, this height in-
creases linearly with the wind velocity u�. The present
model can be extended in many ways including the study
of the dependence of the aeolian transport layer on the
grain diameter, the gas viscosity, and the solid or fluid
densities. This would allow one to calculate, for instance,
the granular transport on Mars and compare with the ex-
pression presented in Ref. [12]. Work in this direction is
under way [25].
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