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Physics of the Resonating Valence Bond (Pseudogap) State of the Doped Mott Insulator:
Spin-Charge Locking
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The properties of the pseudogap phase above Tc of the high-Tc cuprate superconductors are described
by showing that the Anderson-Nambu SU(2) spinors of a resonating valence bond spin gap ‘‘lock’’ to
those of the electron charge system because of the resulting improvement of kinetic energy. This
enormously extends the range of the vortex liquid state in these materials. A heuristic description of
the nonlocal electrodynamics of this pseudogap-vortex liquid state is proposed.
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FIG. 1. Generalized phase diagram of the cuprate supercon-
ductors.
The hole-doped cuprate superconductors have, over the
past decade, been shown to exhibit an unusual phase in the
region of their phase diagram immediately above the
superconducting ‘‘dome’’ in temperature, and especially
for underdoped compositions. This region has been dubbed
variously the ‘‘pseudogap,’’ or ‘‘spin gap’’ region. Figure 1
shows a generalized phase diagram summarizing the phase
boundaries between regions of the complex behaviors
exhibited by these systems, and Fig. 2 [due to Ong and
Wang [1,2] ] is an experimental delineation of the regions
where this phase exhibits the behaviors I will discuss later,
namely, a pronounced vortex Nernst effect and nonlinear
diamagnetic susceptibility, in addition to the pseudogap in
density of states and magnetic gap known to exist over the
wider region below the ‘‘pseudogap temperature’’ T�.

In a sense, the existence of a phase of some such sort was
predicted quite long before it was observed, in that it was
postulated, a few months after the discovery of the high Tc
cuprates, that an RVB, a quantum liquid of singlet pairs of
electrons (‘‘valence bonds’’) might exist in an S � 1=2
Mott insulating system, from which the high Tc supercon-
ductor would develop via doping [3]. Baskaran et al. [4],
and Fukuyama [5], even drew schematic phase diagrams
for such a system which remotely resembled Fig. 1. In a
remarkable and prescient paper, Kotliar and Liu [6], using
slave boson methods, predicted the existence of a pseudo-
gap phase very much resembling that derived by simpler
methods in the present work, but of course they could not
compare their results with experiments which did not yet
exist. The existence of the pseudogap was first seen in
infrared data but not recognized [7], and demonstrated by
magnetic [8], tunneling [9], thermal [10], ARPES [11], and
other experiments over the years. I particularly want to
bring out first the data of Ong et al. on the giant Nernst
effect in Ref. [1], and the nonlinear diamagnetic suscepti-
bility [11] which demonstrate that over a considerable
region this phase exhibits a kind of supercurrent in a
magnetic field; and second the infrared data of Timusk
[12] which show a marked lengthening of the conductivity
relaxation time [13].
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The theory I present for this state starts from the renor-
malized mean field theory [14,15] (RMFT) of the super-
conducting ground state and uses this as an effective
Ginzburg-Landau energy controlling the fluctuations of
the variational and other parameters of the state. The varia-
tional ‘‘gap equations’’ which determine the energies of the
excitations and the energy of the state in RMFT are
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Here E is the quasiparticle energy, and " is its band-
theoretical kinetic energy referred to the Fermi energy. g is
the kinetic energy renormalization factor due to the modi-
fied occupancies in the Gutzwiller-projected BCS state on
which RMFT is based. hgi � 2x=�1� x�, x the doping, in a
reasonably accurate approximation due to Gutzwiller him-
self; and gJ is the renormalizing factor for J. Note that for
x � g � 0, the undoped case, these equations describe the
spinon excitations of a pure RVB.

Unfortunately for the simplicity of our exposition, the
actual state when x � 0 is a Mott insulating antiferromag-
net, which is marginally lower in energy than the RVB one,
at exactly g � 0. Nonetheless we treat the problem of the
1-1 © 2006 The American Physical Society
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FIG. 2 (color online). The dome and the region of observation
of a vortex Nernst effect, as a function of doping for two
superconducting systems. [from Refs. [1,11].]
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superconducting and pseudogap states using the equations
[1] in the approximation g � 0, since, as we shall show, the
kinetic energy gained in the superconducting-RVB state
for g finite soon outweighs this small energy advantage.
Experimentally, the antiferromagnetism is manifested in
this state as the soft ‘‘resonance’’ mode observed in neu-
tron scattering.

The lowest energy translationally invariant state is
given, in this limit, by these equations with ��k� / coskx �
cosky &�k� / coskx � cosky or vice versa. As was empha-
sized in the early work of Refs. [2,5,14], the solutions, and
even the equations, are not unique. It is most evident that �
and � may be interchanged, or in fact any orthogonal
rotation between the two is allowed. (It is only in the
simple nearest neighbor square lattice without doping
that they need to have the same magnitude.) But this is
only a symptom of the gigantic symmetry of the solutions,
which follows from the fact that the Fermion representa-
tion on which they are based is overcomplete. This over-
completeness generates a local SU(2) symmetry [Ref. [3] ],
which follows from the fact that a spin-up hole and a spin-
down electron create the same state of the insulating
Heisenberg model in Gutzwiller projection. This symmetry
is a true gauge symmetry in that the states generated by it
are physically the same state. For translationally invariant
singlet BCS states like (1), the gauge symmetry implies
symmetry under SU(2) rotations operating on the three
Anderson-Nambu pseudospin vectors �1; �2; �3, multiply-
ing, respectively, the real and imaginary anomalous self-
energies and the kinetic energies of a gas of ‘‘spinons.’’

But this is only a tiny fraction of the available represen-
tations. Also equivalent are states describable as a stag-
gered flux phase, a true �-flux phase, a d-density wave,
etc., if one allows translationally noninvariant solutions or
T noninvariant ones. What was striking about all good
RVB solutions was that in spite of their apparent differ-
ences they exhibited four nodes at �=2; �=2 in the spinon
energy as a function of momentum, and this is simply
because they are the same state. The physics behind this
fact is that in order to describe a projected state with no on-
site double occupancy each self-energy must average to
01700
zero hence have a line node; and that the optimum BCS
solution must have as little variation of j�j2 as possible,
hence � should be the sum of orthogonal functions. This
suggests that RVB’s will always have nodes in their spec-
tra, even though there is no Goldstone-type argument for
nodes in terms of broken symmetry. Thus, in summary, the
J term in the t-J model can lead to two and only two self-
energies which may multiply two of the three tau vectors;
i.e., they are a ‘‘dyad’’ which can be rotated arbitrarily in
tau space.

Now we allow g to become finite. Our approach is to set
up a second triad of �’s, thinking, if you like, of g as
defining the �3

0 direction (that of the charge of the pairs)
in this second space. In the RMFT wave function as written
in [16]
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the phase � of the pair wave function is normally taken to
be the phase of v=u, but we will ascribe the phase to g and
leave u and v real. g is a self-energy in the �0 space whose
phase rotates around in the �01; �

0
2 plane and is conjugate to

the charge, thereby defining the third direction. Its meaning
at least in the wave function [2] seems to be that it is the
hole pair amplitude, which in the ground state is Bose
condensed.

We now consider the two triplets of vectors � and �0 to
be oriented at arbitrary Eulerian angles with respect to each
other in the abstract space. We may factorize the J term in
such a way as to give self-energies along any two, but only
two, orthogonal directions in �0 space. The self-consistent
solutions for � and � depend only weakly on these angles
for small g, so a good approximation to the effective
Hamiltonian for quasiparticles is then
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Here we derive an effective free energy as a functional of
the parameters in the one-electron Hamiltonian which
leads to the gap equation—the most important of these
parameters being the angles between the two triads of
vectors. The ‘‘gaps’’ themselves, � and � , do not vary
much at small g, though �, which will become the super-
conducting gap, will of course decrease appreciably toward
optimal doping. The interaction term in the free energy,
which will be of the form hj�2j � j�2ji=J, will clearly not
change much as a function of angles, so that mostly we
have to consider the effective one-quasiparticle energy [3].
The ‘‘extended s-wave’’ solution ��k� to the RVB gap
equations strongly resembles the one-particle kinetic en-
ergy—which is not surprising since J is a second-order
consequence of the kinetic energy. (What is more germane
to the special nature of the cuprates is the existence of the
second, orthogonal, d-wave solution.) Therefore, it be-
1-2
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comes quite obvious that when �2 is parallel to �3
0, the

kinetic energy is very considerably enhanced, because the
coefficient ��k�, which is the multiplier of the first term in
[14], then becomes the sum of two terms of the same
structure and the same sign. [This was of course the choice
which was made in Ref. [4] and in the original paper [14]
on the RMFT.] Therefore, with this choice we maximize
the quasiparticle energies, which necessarily minimizes the
total energy. The ‘‘locking’’ is illustrated in Fig. 3.

This is the central result of the theory: that upon doping
the �2 axis of the RVB triad locks to the �3

0 axis of the
Nambu triad of the charge degrees of freedom of the real
electrons, so that the �1 axis necessarily lies in the �1

0; �2
0

plane and � serves as a (necessarily real) anomalous self-
energy for the actual electrons, which live on the primed
triad. The reason for the name ‘‘spin-charge locking’’ is the
similarity to the mechanism of ‘‘color-flavor locking’’ of
Wilczek [17].

A second scale is the energy which maintains the broken
true phase symmetry. The phase in the �1

0; �2
0 plane is

meaningful only as a relative variable and acquires no
stiffness from J—a fact which is equally true for conven-
tional superconductors, for which the stiffness �s�r�1�2�

2

is a property of the normal electrons, independent of gap
parameters or interactions. The loss of this stiffness may
formally be seen as an ‘‘unlocking’’ process also, but is not
in principle different from a conventional two-dimensional
Tc. There are therefore two transitions and three different
phases: the low temperature phase is the true superconduc-
tor where the two triads may be thought of as locked
together; this undergoes loss of phase coherence at Tc,
but the �3

0 and �2 directions remain locked together in
the spin-charge locked pseudogap phase, so that the fluc-
tuating anomalous self-energy remains, retaining its d
symmetry and its nodes along the �;� line; and finally,
complete unlocking where there may be a pseudogap but it
does not show momentum dependence—in this third
FIG. 3. The charge and spin pseudovector triads, and the
relative orientation when ‘‘locked’’ (in the superconducting
state.)
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phase there is no connection between the spin gap structure
and the hole or particle nature of the excitations.

The transition temperature for the unlocking transition
may be estimated from the energy involved. It must lie
between Tc, where the phase coherence dies, and T� �
J� xt, where the RVB gaps appear [18], and we conjec-
ture that it is the crossover or ‘‘onset’’ identified by Ong
et al.. The energy involved is relatively easy to estimate for
low doping, where gt� �;�. Here the average kinetic
energy of a state with arbitrary orientation of the �’s is
zero, since there will be no correlation between kinetic
energy and occupation; while with the locked configura-
tion, the kinetic energy per electron and the locking tem-
perature T�0 will be of order gt, so that it will rise more
steeply than Tc � g�. This agrees roughly with Ong’s
observations (see Fig. 2). This rise will stop before gt �
� � �J� gt�, where the two contributions � to become
comparable; this will come at about 1=2 of the maximum
doping. From this point on the calculation of the energy
becomes quite complicated and we will postpone it to a
later paper. Reference [5] suggests that the onset may not
change much with further doping.

The electrodynamics of the partially locked state is in
principle the same as that of the vortex liquid state [19], in
terms of symmetry. It has in common with that state that
there is always an anomalous amplitude, i.e., a ‘‘gap,’’ but
that the phase of this gap is fluctuating freely; there is a
liquid of vortex lines. Not much thought has been given to
the responses of such a liquid.

I have concluded that an approximation to its behavior
may be obtained in the following way. The instantaneous
response to an electromagnetic field is identical to that of
an ordinary superconductor, but the current-current corre-
lation decays with a finite correlation time �. The super-
conducting response to an electric field is the acceleration
equation: dJ

dt � �sE; correspondingly, for the locked but
nonsuperconducting state we should have

Js � �s�E; �s � �s�: (4)

�, the correlation time for the phase, is a parameter. We
have no a priori reason to select a magnitude for 1=�, but it
certainly should remain less than �, otherwise the picture
is meaningless; and experimental data on infrared response
in the RVB region suggest that the vortices freeze when
1=� � T � Tc [20]. But near Tc the behavior will be
critical and complex, and the idea of an overall � is
obviously too simple.

The diamagnetic response is more interesting. Our pic-
ture of the pseudogap-vortex liquid state is that the order
parameter remains nonvanishing but has no long-range
phase order. If one were to introduce a flux quantum
instantaneously at a point one would induce supercurrents
throughout the sample, including the long-range current
�s�@=m�r� / 1=r. Thus the response is fundamentally
nonlocal and nonlinear. The energy of the vortex currents
1-3
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varies with B as B lnHc2

B and one might expect that the
Nernst effect thermopower would have a similar variation,
and that the susceptibility might also be nonlinear in B and
possibly even singular as B! 0. This nonlinearity was
first observed by Ong and co-workers in Ref. [11]; in fact,
it was the search for a mechanism for this behavior which
led to the present line of thinking. They also observe that
the upper critical field Hc2 is continuous through the
melting line and remains large and finite to temperatures
where the susceptibility can no longer be measured. This
field must be that where the charge becomes unlocked from
the RVB, since I cannot see how the field would have much
effect on the RVB. I can see no other explanation—for
instance, critical behavior—for the remarkable fact that
the susceptibility remains nonlinear over such a wide range
of temperatures and fields.

It is possible to improve somewhat on the simple ex-
pression B lnHc2

B , which is meant only to show the nature of
the singularity at B � 0. In the d-wave superconductor
there is a distribution of gaps and therefore we may ap-
proximate its response by summing over a distribution of
Hc2’s. To get a notion of the form of the variation let us
assume that the distribution of � is uniform; if we do this
we find that the expression for the Nernst thermopower 	
becomes

	 / B�
����
B
p
� 1� ln�

����
B
p

�; where B � H=Hc2 max: (5)

This expression has a family resemblance to some of the
data of Ong and Wang.

In summary, I have proposed a theory which accounts
for many of the anomalous experimental facts about the
pseudogap state, is not falsified by any observations to our
knowledge, and connects rather seamlessly to the only
successful microscopic theory of the superconducting
state. Neither theory places much emphasis on the compli-
cations of the various inhomogeneous phases which tend to
occur in these systems but which seem to involve smaller
energies and weaker perturbations than the more striking
and universal effects we discuss. [In fact, one such phe-
nomenon, the ‘‘checkerboard,’’ seems to receive a natural
explanation within this theory [21].] The crucial step seems
to be the idea of visualizing the RVB as a separate entity in
the spin Hilbert space which is locked to the electron
charge Hilbert space by a relatively weak force in the
low doping limit. This makes irrelevant the many ‘‘ghost
vacua’’ of the spin system which have led other workers
astray. Yet when the spin system chooses a physically
different ‘‘vacuum’’—the Mott insulating antiferromag-
netic state, for instance—the whole complex of supercon-
ductivity can completely disappear [22].

In terms of the symmetry classification of phases, I have
not discovered any ‘‘new’’ entities. The superconducting
01700
state is only unconventional in that its quasiparticles are
not hole-particle symmetric. The pseudogap phase is
‘‘only’’ an enormous extension of the vortex liquid. Yet
each exhibits new and unexpected physical phenomena.
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G. Kotliar, and P. A. Lee as founders of the gauge theories,
and C. Gros, F. C. Zhang, M. Randeria, and N. Trivedi as
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adequately acknowledged by the text references.
1-4
[1] Z. A. Xu et al., Nature (London) 406, 486 (2000); Yayu
Wang et al., Science 299, 86 (2003); N. P. Ong et al.,
Ann. Phys. (Berlin) 13, 9 (2004).

[2] Yayu Wang et al., cond-mat 0503190; N. P. Ong and Yayu
Wang, Physica (Amsterdam) 408C, 11 (2004).

[3] P. W. Anderson, in Valence Fluctuations and Heavy
Fermions, edited by L. C. Gupta and S. K. Malik
(Plenum, New York, 1987), p. 9; Science 235, 1196
(1987).

[4] G. Baskaran, Z. Zou, and P. W. Anderson, Solid State
Commun. 63, 973 (1987).

[5] Y. Suzumura, Y. Hasegawa, and H. Fukuyama, J. Phys.
Soc. Jpn. 57, 401 (1988), among many others.

[6] G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988).
[7] G. A. Thomas et al., Phys. Rev. Lett. 61, 1313 (1988).
[8] H. Alloul et al., Phys. Rev. Lett. 63, 1700 (1989).
[9] Ch. Renner et al., Phys. Rev. Lett. 80, 149 (1998).

[10] J. W. Loram et al., Physica (Amsterdam) 235-240C, 134
(1994).

[11] D. S. Marshall et al., Phys. Rev. Lett. 76, 4841 (1996);
Hong Ding et al., Nature (London) 382, 51 (1996).

[12] A. V. Puchkov, D. N. Basov, and T. Timusk, J. Phys.
Condens. Matter 8, 10 049 (1996).

[13] This region may have been first described by J. Corson
et al., Nature (London) 398, 221 (1999).

[14] F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba,
J. Supercond. Sci. Tech. 1, 36 (1988).

[15] P. W. Anderson et al., J. Phys. Condens. Matter 16, R755
(2004).

[16] P. W. Anderson and N. P. Ong, cond-mat 0405518;
Proceedings of the SCE2004 Conference [J. Phys.
Chem. Solids (to be published)].

[17] M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.
B537, 443 (1999).

[18] P. W. Anderson, J. Phys. Chem. Solids 63, 2145 (2002).
[19] See, for instance, M. Feigelman and L. Joffe, Pizma

Zhetf 61, 71 (1995), and references therein.
[20] C. C. Homes et al., Nature (London) 430, 539 (2004).
[21] P. W. Anderson, cond-mat 0406038.
[22] I. Bozovic et al., Nature (London) 422, 873 (2003).


