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Detecting Non-Abelian Statistics in the � � 5=2 Fractional Quantum Hall State

Parsa Bonderson,1 Alexei Kitaev,1 and Kirill Shtengel1,2

1California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics, University of California, Riverside, California 92521, USA

(Received 30 August 2005; published 6 January 2006)
0031-9007=
In this Letter we propose an interferometric experiment to detect non-Abelian quasiparticle statistics—
one of the hallmark characteristics of the Moore-Read state expected to describe the observed fractional
quantum Hall effect plateau at � � 5=2. The implications for using this state for constructing a
topologically protected qubit as has been recently proposed by Das Sarma et al. are also addressed.
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FIG. 1 (color online). A two-point-contact interferometer for
measuring the quasiparticle statistics. The hatched region con-
tains an incompressible FQH liquid. The front gates (gray
rectangles) are used to bring the opposite edge currents (indi-
cated by arrows) close to each other to form two tunneling
junctions. Applying voltage to the central gate creates an antidot
in the middle and controls the number of quasiparticles con-
tained there.
Introduction.—One of the most interesting aspects of the
fractional quantum Hall effect (FQHE) is the fractionalized
nature of its quasiparticle excitations. In addition to carry-
ing a fraction of the electron charge, these excitations are
generally expected to have exotic exchange statistics
which are neither bosonic nor fermionic. These exotic
statistics, generally allowed in 2� 1 dimensions [1], are
given by representations of the braid group (as opposed to
higher dimensions where statistics is represented by the
permutation group), and particles that transform as such
have been dubbed anyons [2]. The fractional charge of
quasiparticles in the � � 1=3 Laughlin state was first
measured a decade ago [3], but confirmation of their
statistics remained elusive until very recently [4]. Aside
from the experimental difficulties associated with measur-
ing quasiparticle interference patterns, there are also con-
ceptual issues regarding how to isolate the contribution of
braiding statistics from that of the Aharonov-Bohm phases
that arise due to the quasiparticle charge encircling a region
of magnetic flux. For a careful discussion of this subject,
see [5]. Curiously, isolating these pieces may prove easier
in a more exotic state with non-Abelian statistics. In such a
system, the Hilbert space is multidimensional and ex-
change transformations may rotate different states into
one another. This notion, along with a topological protec-
tion inherent in these systems make them attractive candi-
dates for fault-tolerant quantum computation [6–8]. A
concrete proposal for creating a topologically protected
qubit has been recently put forward in [9].

While the existence of Abelian anyons has been well
established in the context of FQHE, the more exciting
prospect that non-Abelian anyons exist has not been ex-
perimentally confirmed. The prime candidate for finding
non-Abelian statistics seems to be the FQH state observed
at the � � 5=2 plateau [10]. While its first Landau level
counterpart, the � � 1=2 state, is widely believed to be a
Fermi liquid of composite fermions [11], it is most likely
that the � � 5=2 system is the p-wave (spin-polarized)
superconducting condensate described by the Moore-Read
(MR) state [12,13]. Experimental evidence of spin polar-
ization [14], together with careful numerical studies [15],
indicate a preference for the MR state over other potential
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candidates, notably the Abelian (3,3,1) Halperin state [16],
the non-Abelian (albeit critical) Haldane-Rezayi state [17],
and the compressible striped phase [18].

Proposed experimental setup.—The experimental de-
vice we would like to consider is a two-point-contact
interferometer composed of a quantum Hall bar with two
front gates on either side of an antidot (see Fig. 1). Biasing
the front gates can be used to create constrictions in the
Hall bar, adjusting the tunneling amplitudes t1 and t2. The
relative amplitudes can be compared by individually
switching them on. The tunneling between the opposite
edge currents leads to the deviation of �xy from its quan-
tized value, or equivalently, to the appearance of �xx. The
goal of the experiment is to observe the interference be-
tween the two tunneling paths that the quasihole current
may traverse. For this experiment, we are interested in the
weak backscattering regime, i.e., the case where the tun-
neling amplitudes t1 and t2 are small. The main reason for
this is to ensure that the tunneling current is entirely due to
charge e=4 quasiholes (with essentially no contribution
from the higher charge composites), which is a crucial
component of our predictions. In this regime, such tunnel-
ing is indeed the most relevant perturbation [19,20], but
this need not be true in the strong tunneling regime, where
the constrictions are effectively pinched off. We should
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also mention that interpreting the interference pattern is
simplified when t1 and t2 are small.

For the purposes of this experiment, we envision three
main experimentally variable parameters: (i) the central
gate voltage allowing one to control the number n of
quasiholes on the antidot, (ii) the magnetic field B, and
(iii) the back gate voltage controlling the uniform electron
density. This setup is essentially identical to that proposed
for measuring statistics in the Abelian FQHE [5], later
adopted for the non-Abelian case in [21], and not dissimi-
lar to the one experimentally realized in [4].

To lowest order in t1 and t2, the tunneling current and,
hence, longitudinal conductivity �xx in this system will be
proportional to the probability that current entering the
bottom edge leaves through the top edge:

�xx / j�t1U1 � t2U2�j�ij
2

� jt1j
2 � jt2j

2 � 2 Reft�1t2h�jU
�1
1 U2j�ig

� jt1j2 � jt2j2 � 2 Reft�1t2e
i�h�jMnj�ig: (1)

In this expression, U1 and U2 are the unitary evolution
operators for a quasihole taking the two respective paths,
and j�i is the initial state of the system. In the third line,
ei� is the phase acquired from the dynamics of traveling
along the edge around the center region together with the
Aharonov-Bohm phase from taking the quasihole charge
around the magnetic flux through the center region. The
operatorMn is the transformation due solely to the braiding
statistics of winding a single quasiparticle around n quasi-
particles. Its value for the MR state was related to the Jones
polynomial in [21] using the Chern-Simons effective the-
ory. We shall extend their analysis and show explicitly how
to detect the non-Abelian statistics.

If we keep the filling factor fixed by simultaneously
adjusting B and the electron concentration, so as to keep
the quasihole number constant, the Aharonov-Bohm phase
as a function of � will have a periodicity of �e=e���0

where �0 � 2�=e (in units @ � c � 1) and e� is the
electric charge of the quasiholes [5]. Thus, varying the
flux � allows one to determine the quasiparticle charge.
Note that for � � 5=2, a quasihole charge of e� � e=4
rather than e� � e=2, would be indicative of a paired state.

The Moore-Read state.—The braiding statistics of par-
ticles in a 2� 1 dimensional quantum system may be
described by a general model of anyons (see [8,22] and
references therein). Such a model is defined by a set of
particle types, fusion rules, and braiding rules, all of which
are required to satisfy certain consistency conditions. The
particle types and their fusion rules can be, respectively,
thought of as generalizations of group representations and
their tensor products, specifying values of conserved
charges and the possible values that may be obtained
when forming composite objects (composite in this context
need not necessarily mean that the constituents are bound
together, but simply that their local properties are not being
01680
individually probed, as in the case when they are being
viewed from far away).

The anyon model that describes the MR state can be
denoted as U�1� � Ising. (The term ‘‘Ising’’ is used here in
reference to the anyon model obtained from the holomor-
phic part of the conformal field theory that describes the
Ising model at criticality.) In this notation, U(1) refers to
the familiar Abelian charge-flux sector, for which particle
type is specified by the amount of charge and flux carried,
the fusion rules are simply addition of these quantities (i.e.,
the conservation of charge and flux), and the braiding rules
are specified by the usual phases acquired from winding
charge-flux composites, i.e., winding one �q;�� charge-
flux composite around another produces a phase of eiq�

[23]. Though less familiar, the Ising anyon model (which
contributes all of the non-Abelian statistics to the MR
state), is fairly simple. It has three particle types, conven-
tionally denoted as: I (vacuum), � (spin/vortex), and  
(Majorana fermion) [24], and the following fusion rules:

I � I � I; I� � � �; I�  �  ;

�� � � I�  ; ��  � �;  �  � I:
(2)

In words, combining the two particle types on the left-hand
side of the equal sign gives some superposition of states
carrying the labels on the right-hand side (as mentioned
earlier, one may think of the symbols � and +, respec-
tively, as generalizations of the tensor product, �, and the
direct sum, 	). Graphically, these rules can be represented
by locally permitting only the following set of trivalent
vertices (in any desired orientation):

From the anyon model rules and consistency conditions
(which we will not present here, but instead refer the reader
to [22] for details [26]), we can distill the following braid-
ing rules:

We emphasize that these diagrams merely keep track of
particle fusion and braiding statistics. There are no addi-
tional propagators or interactions associated with these
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diagrams that need to be calculated, and these relations are
unchanged by any smooth deformations in which world-
lines do not cross. The signature of non-Abelian statistics is
apparent in Eq. 3(c), where winding two� particles around
each other is seen to be equivalent (up to a phase) to
exchanging a  particle between them.

Each quasihole in the MR state carries a U(1) charge flux
of �e=4;�0=2� as well as the Ising label �. A straightfor-
ward application of the fusion rules determines that a
composite of n quasiholes will have U(1) charge flux
�ne=4; n�0=2� and Ising label Qn, where Qn must equal
�when n is odd, but can equal either I or  when n is even.
We can combine the braiding rules of the two sectors to get
the rules for winding a single quasihole counterclockwise
around n quasiholes by making the following modifica-
tions to the diagram equations of the Ising sector
Eqs. 3(a)–(c): assign �e=4;�0=2� to the leftmost and
�ne=4; n�0=2� to the rightmost worldlines on each side,
assign �0; 0� to the  world line in 3(c), and multiply the
right-hand side of each equation by exp�in�=4�. These
rules agree with those obtained by explicitly manipulating
quasihole wave functions in the MR state [27].

The inner product for the interference term h�jMnj�i is
represented diagrammatically by the standard closure,
where each world line is looped back onto itself in a
manner that introduces no additional braiding. From
Eq. 3(c), we find that if there is an odd number of quasi-
holes on the antidot, h�jMnj�i is proportional to the
following diagram [leaving U(1) labels implicit]:

But this diagram has vanishing amplitude as a result of the
following general consistency condition in anyon models:

where the labels indicate particle types permitted by the
fusion rules. Thus, with no interference, we have

�xx / jt1j
2 � jt2j

2; n odd: (6)

When there is an even number n of quasiholes on the
antidot, the environment will effectively measure the state,
forcing it into either an overall I or  (not a superposition
of the two). It is easy to see from 3(a),(b) that the interfer-
ence term h�jMnj�i � ��1�N ein�=4, and thus,

�xx / jt1j
2 � jt2j

2 � ��1�N 2jt1 k t2j cos
�
�� n

�
4

�
;

n even; (7)

where � � �� arg�t2=t1� can be varied by changing B or
the relative tunneling phase. Here, N � 1 when the n
quasiholes are in the  state and 0 otherwise. We note,
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that for two well-separated quasiholes, the energies of the
two possible combined states (I or  ) are equal. This,
however, is not going to be the case for two quasiholes
on the same antidot. In particular, one can write down the
two corresponding wave functions for the case of a ‘‘small
antidot’’ with two quasiholes located at the origin [28]:

�2qh;I �
Y
j

zj�GS; (8)

where

�GS�A

�
1

z1�z2

1

z3�z4





�Y
j<k

�zj�zk�
2
Y
j

e�jzjj
2=4 (9)

is the ground state wave function for the MR state with
A�. . .� denoting the antisymmetrized sum over all possible
pairings of electron coordinates, and

�2qh; � �jzjA
�
z1 � z2

z1z2

1

z3 � z4

1

z5 � z6

 
 


�

�
Y
j<k

�zj � zk�
2
Y
j

e�jzjj
2=4: (10)

While these wave functions are clearly different, using
them as variational functions to estimate the energy differ-
ence for the case of realistic electron-electron interactions
appears hopeless since even the ground state wave function
(9) is not actually a ground state for any such realistic
interaction. While this remains an open problem, a very
naı̈ve argument would suggest that the energy difference
should scale as e2=R where R is the antidot radius; how-
ever, it is entirely possible that such a term will have a
small prefactor. If charging the antidot is done adiabati-
cally, one may hope that upon addition of two new quasi-
holes, the system will remain in the same energetically
preferred state (probably I). In such a case, �xx is expected
to cycle through all four possible values given by Eq. (7) as
a function of an increasing even number of quasiholes,
while it returns to the same value given by Eq. (6) for any
odd number of quasiholes. However, if the combined state
of an even number of quasiholes is chosen randomly every
time, we cannot expect such even number periodicity,
though the magnitude of the current will generically
change whenever two quasiholes are added. The real test
for the non-Abelian nature is done by changing the mag-
netic field B at fixed filling fraction, for a various number
of quasiholes on the antidot. In doing so, Aharonov-Bohm
oscillations with period 4�0 should be observed in the
even n case and no oscillations whatsoever should be
seen for the odd n case [29].

Implications for a topological qubit scheme.—We fi-
nally turn to the implications of our results to the proposed
implementation of a topological qubit [9], which is sche-
matically shown in Fig. 2.

Assuming the qubit is implemented as prescribed, one
nevertheless has to address the issue that ‘‘stray’’ quasi-
particles may disrupt the ability to both measure and switch
the state of the qubit. These stray excitations may be
trapped elsewhere in the system by a local disorder poten-
3-3
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FIG. 2 (color online). The configuration for a topologically
protected qubit proposed in [9]. A two-point interferometer is
used to measure the combined state of a quasihole pair split onto
two separate antidots. A bit flip that switches between the I and
 states is performed by tunneling a single quasihole through the
switching constriction, whose tunneling amplitude tS can be
turned on and off by controlling the middle set of gates.

PRL 96, 016803 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JANUARY 2006
tial. From 3(a)–(c) and the related discussion, it is clear
that in order to be able to detect the state of the
qubit, the total number of quasiparticles (and quasiholes),
including the strays, in the area between the ‘‘measure-
ment’’ tunneling contacts (t1 and t2 in Fig. 2) must be
even, otherwise the interference necessary to distinguish
the states will not be seen. Similarly, in order for switch-
ing to work, the total number of quasiparticles in the
left partition (i.e., between t1 and tS in Fig. 2) must be
odd, otherwise the state would simply acquire an Abelian
phase.

Conclusion.—To summarize, in this Letter we propose
an interferometric experiment for detecting non-Abelian
quasiparticle statistics in the MR state, the leading candi-
date for the � � 5=2 FQHE plateau. Interestingly, while
performing this experiment at � � 5=2 is expected to be
more difficult than for well established Laughlin states due
to the smaller energy gap, the signature of a non-Abelian
state would be much easier to interpret due to the clear
separation of non-Abelian statistics from other effects that
can only contribute Abelian phases. The experimental
setup discussed here, while simpler than that recently
proposed for a topological qubit, may be a first step in
the implementation of that scheme.
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