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Schwinger Boson Approach to the Fully Screened Kondo Model
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We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to
include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from
local moment behavior to a Fermi liquid with a nontrivial Wilson ratio. When applied to the two-impurity
model, the mean-field theory describes the ‘‘Varma-Jones’’ quantum phase transition between a valence
bond state and a heavy Fermi liquid.
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Heavy fermion metals have attracted great interest as an
arena for the controlled study of magnetic quantum phase
transitions [1]. Several recent observations cannot be
understood in terms of the established Moriya-Hertz theory
of quantum phase transitions [2– 4], including the diver-
gence of the heavy electron masses [5], the near linearity of
the resistivity [6–9], and E=T scaling in inelastic neutron
spectra [10]. The origins of this failure are thought to be
linked to the competition between antiferromagnetism and
the screening of local moments via the Kondo effect. It
remains an unsolved challenge to discover the appropriate
mean-field description and the corresponding quantum
critical modes which govern these novel quantum phase
transitions [1,11–13].

Large-N methods offer a promising route towards this
goal. Historically, these methods played a major role in the
theory of classical criticality [14], and more recently, in the
theory of heavy fermion metals [15,16]. However, progress
on quantum phase transitions has been hindered by our
inability to capture both the Kondo effect and antiferro-
magnetism in the leading large N approximation.

In this Letter, we describe new progress towards this
goal using Schwinger’s boson representation of spins [17].
Unlike traditional fermionic representations of spin [15,16]
the Schwinger boson scheme provides a good description
of local moment magnetism [17]. However, efforts to gen-
eralize this method to the Kondo problem [18,19] have
failed to capture the Fermi liquid physics associated with
perfect screening of the moment. Here we solve this prob-
lem using a method coinvented by one of us (O. P.) [18]
which employs a multichannel Kondo model with K
screening channels. By tuning the size of the spin S from
S < K=2 to S > K=2, one can describe both the over-
screened and underscreened Kondo models. Difficulties
were encountered in past work that appeared to exclude
treatment of the perfectly screened case, 2S � K. We show
how these difficulties are overcome to reveal the perfectly
screened Fermi liquid and we demonstrate how this
method captures the competition with antiferromagnetism
in its simplest extension to the two-impurity Kondo model.
06=96(1)=016601(4)$23.00 01660
We begin with the single impurity Kondo model,
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In this version of the model, cy~k�� creates a conduction
electron of momentum ~k, channel index � 2 �1; K�, spin
index � 2 ��j; j�, where N � 2j� 1 is even.  y�� �

1������
N s

p
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~kc
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creates an electron in the Wannier state at

the origin, where N s is the number of sites in the lattice.
The operator by� creates a Schwinger boson (‘‘spinon’’)
with spin index � 2 ��j; j�. The local spin operator is
represented by S�� � by�b� � ���=N and the system
is restricted to the physical Hilbert space by requiring
nb �

P
�b
y
�b� � 2S. The final term in H contains a

temperature-dependent chemical potential ��T� that imple-
ments the constraint hnbi � 2S. We will examine the fully
screened case 2S � K, taking the limit N ! 1 with k �
K=N fixed.

The first step is to factorize the interaction in terms of
auxiliary spinless fermion fields (‘‘holons’’), ��,
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: (2)

Following the steps outlined by us in earlier work [20], we
now write the free energy as a Luttinger-Ward [21] func-
tional of the one particle Green’s functions,

F�G� � TStr �ln��G�1� � �G�1
0 �G�1�G� � Y�G�; (3)

where Str �A� � Tr �AB� � Tr �AF� is the graded (super)
trace over the Matsubara frequencies, internal quantum
numbers of the bosonic (B) and fermionic (F) components
of A. G0 is the bare propagator and G � Diag �Gb;G�;Gc�,
the fully dressed propagator, where
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��i!n� � G�1
0 � G�1 denotes the corresponding self-

energies. Gc0�i!n� �
P

~k1=�i!n � � ~k� is the bare conduc-
tion electron Green’s function. The quantity Y�G� is the
sum of all closed-loop two-particle irreducible skeleton
Feynman diagrams. In the large N limit, we take the
leading O�N� contribution to Y (Fig. 1).

The variation of Y with respect to G generates the self-
energy �Y=�G � �, which yields �c��� �

1
N G����� 	

Gb���. Since �c is of order O�N�1� we use the bare
conduction propagatorGc0 in the self-consistent equations,

����� � Gb���Gc0����; �b��� � �kG����Gc0���:

(5)

In practice, we solve these equations using a real time
representation of the Green’s functions. [See, for example,
[19]].

The original work in [18,22] focused primarily on the
overscreened Kondo model, where K > 2S. The perfectly
screened case presented two difficulties. First, the require-
ment that K � 2S appeared extremely stringent, the slight-
est deviation from this condition leading to singular
departures from Fermi liquid behavior at low temperatures.
Second, the conduction electron phase shift �c is 	=N,
suggesting that the effect of the Kondo resonance would
completely vanish in the large N limit.

Two new observations shed new light on this problem.
First, the perfectly screened case is a stable ‘‘filled shell’’
singlet configuration of the spins, which at strong coupling
correspond to ‘‘rectangular’’ Young tableau representa-
tions of SU�N�. [23,24]. In our gauge theory description
of the Kondo model, this stability manifests itself through
the formation of a gap in the spinon and holon spectrum.
When the chemical potential, �, lies within this gap, the
ground-state Schwinger boson occupancy locks into the
value nb � K � 2S (Fig. 2). Moreover, the gap removes
the effect of the spinons and holons at low energies to
reveal a Fermi liquid.

Second, although the conduction phase shift �c is 	=N,
its effect on the thermodynamics is multiplied by the N
FIG. 1. Leading contributions to Y�G� in 1=N expansion.
Solid, dashed, and wavy lines, respectively, represent Gc, G�,
and Gb. Each vertex is associated with a factor i=

����
N
p

. Bracketed
terms are dropped in the large N limit.
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spin components and the K scattering channels, producing
an order O�N 	 K=N� � O�N� contribution to the free
energy. Moreover, a Ward identity �c � ��=N, where
�� � Im ln�1� JK���0� i��� is the (finite) holon phase
shift [19,20] enables us to compute the conduction electron
scattering in the large N limit.

In the large N limit the entropy [20] is given by
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where frequency labels ! are suppressed in the integrand,
nB=F denote the Bose-Fermi functions, and
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is the rescaled conduction self-energy. The shortened no-
tation G�!� � G�!� i�� has been used. We can also
calculate the local magnetic susceptibility

�loc�T� � �2N
Z d!

	

�
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�
G0b�!�G

00
b�!�; (8)

where we have taken the magnetic moment of the local
impurity to be M �

P
�sgn ���by�b�. Note in passing that

the dynamic counterpart hS�t�S�0�i vanishes exponentially
due to the gap in the bosonic spectral functions, the 1=t2

term characteristic of a Fermi liquid only appearing at the
next order in 1=N.

We have numerically solved the self-consistent equa-
tions for the self-energy by iteration, imposing the
constraint at each temperature. Figure 3 shows the
temperature-dependent specific heat coefficient CV

T �
dS
dT

and the full magnetic susceptibility ��T�. There is a smooth
crossover from local moment behavior at high tempera-
tures �� nb�1� nb�=T to Fermi liquid behavior at low
temperatures. From a Nozières-Blandin description of the
local Fermi liquid [25] (where channel and charge suscep-
FIG. 2. (a) Calculated variation of occupancy as a functional of
boson chemical potential � in the ground state for k � 0:3 and
T=TK � 0:005. (b) A spinon gap develops in the fully screened
state.
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FIG. 3 (color online). Showing temperature dependence of
(a) impurity magnetic susceptibility and (b) specific heat ca-
pacity in the fully screened Kondo model for k � 0:3, 0.5, 0.7
(with the Kondo temperature given by TK � De�2D=JK , D being
the electron bandwidth). Inset calculated Wilson ratio.
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tibility vanish), we deduce the Wilson ratio

W �
�=

�0=
0

�
�1� k�

1� 1=N2 : (9)

This form is consistent with Bethe Ansatz results [23]. We
may also derive this result by applying Luttinger-Ward
techniques [26] to our model. Our large N approximation
reproduces the limiting largeN behavior of this expression,
W � 1� k; in other words, the local Fermi liquid is inter-
acting in this particular large N limit.

Having demonstrated that our method captures the ther-
modynamic aspects of the Fermi liquid behavior in the
single impurity model, we now show it can handle mag-
netic correlations within the two-impurity Kondo model,

H�
X
~k;�;�

� ~kc
y
~k��
c ~k���HK�1��HK�2��

JH
N
By12B12; (10)

where HK�i� is the Kondo Hamiltonian for impurity �i� and
the antiferromagnetic interaction between the two mo-
ments is expressed in terms of the boson pair operator
B12 �

P
�sgn ���b1�b2��. H is invariant under spin trans-

formations in the symmetry group SP (N) (N-even) [27].
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We now factorize the antiferromagnetic interaction [17],

�
JH
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By12B12 !

��B12 � B
y
12��

N ���

JH
: (11)

Boson pairing is associated with the establishment of
short-range antiferromagnetic correlations. Once � be-
comes nonzero, the local gauge symmetry is broken, and
the Schwinger bosons propagate from site to site. In this
state, the holons delocalize, giving rise to a mobile,
charged yet spinless excitation that is gapped in the
Fermi liquid. Loosely speaking, on a lattice, these excita-
tions are mobile Kondo singlets. However, since the paired
Schwinger bosons interconvert from particle to hole as
they move, they only induce holon motion within the
same sublattice. Therefore, in the special case of two-
impurity model, so long as the net coupling between the
spins is antiferromagnetic, the holons remain localized.

Under these conditions, we can adapt the single impurity
equations to the two-impurity model by replacing

Gb�!� ! ~Gb�!� � �Gb�!�
�1 � j�j2Gb��!�


��1 (12)

in the integral equations. We must also impose self-
consistency � � �JHhB12i, or

1
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�
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We have solved the integral equations with this modified
boson propagator. Using the entropy as a guide, we are able
to map out the phase diagram (Fig. 4.).

We find that the development of � � 0 preserves the
linear temperature dependence of the entropy at low tem-
peratures, indicating Fermi liquid behavior. However, as
the JH increases, the confining gap for the creation of free
spinons and holons collapses towards zero, and the corre-
sponding temperature range of Fermi liquid behavior ulti-
mately vanishes at a critical value of JH � Jc. For JH > Jc,
the holon-spinon gap becomes finite again and Fermi
liquid behavior reemerges, but the phase shift �� is found
to have jumped from 	 to zero, indicating a collapse of the
Kondo resonance. The entropy develops a finite value at
the quantum critical point which is numerically identical to
half the high temperature entropy of a local moment,
�N=2���1� nb� ln�1� nb� � nb lnnb�. Similar behavior
occurs at the ‘‘Varma-Jones’’ fixed point [28–30] in the
N � 2 two-impurity model when the conduction band is
particle-hole symmetric. We can in fact identify two max-
ima in the specific heat, indicating that as in the N � 2
Varma-Jones fixed point, the antiferromagnetic coupling
generates a second set of screening channels, leading to a
two-stage quenching process.

The survival of the Varma-Jones fixed point at large N in
the absence of particle-hole symmetry is a consequence of
the two-impurity Friedel sum rule,
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FIG. 4 (color online). Phase diagram for the two-impurity
Kondo model showing the boundary where boson pairing devel-
ops. Color coded contours delineate the entropy around the
Varma-Jones fixed point. Black line indicates upper maximum
in specific heat, blue line, lower maximum in specific heat where
crossover into the Fermi liquid takes place. Inset: (a) entropy for
various values of TK=JH, (b) showing dependence of �� on
TK=JH at a temperature T=TK � 0:02.
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��� � ��� �
2	
N
; (14)

where �� are the even and odd parity scattering phase
shifts. For N � 2, it is possible to cross smoothly from
unitary scattering off both impurities (�� �

	
2 ), to no

scattering off either (�� � 	, �� � 0) while preserving
the sum rule, but forN > 2, the sum rule cannot be satisfied
in the absence of scattering, and the collapse of the Kondo
effect must occur via a critical point.

In conclusion, we have shown that a Schwinger boson
approach to the fully screened Kondo model can be natu-
rally extended to incorporate magnetic interactions. In the
simplest case of a two-impurity Kondo model our approach
captures the transition between the state where the two
impurities are antiferromagnetically correlated and the
Kondo Fermi liquid state. In the large N limit, these two
states are separated by a quantum critical point, a possible
precursor of an antiferromagnetic quantum critical point.
One of the interesting new elements is the appearance of
mobile, yet gapped ‘‘holon’’ excitations in the antiferro-
magnetically correlated Fermi liquid. In the two-impurity
model these holons become gapless at the quantum critical
point. Future work will examine whether this same sce-
nario also operates at a heavy electron quantum critical
point, leading to quantum critical matter with spin-charge
decoupling [1,13].
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