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Quantum Critical Point of an Itinerant Antiferromagnet in a Heavy Fermion
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A quantum critical point of the heavy fermion Ce�Ru1�xRhx�2Si2, �x � 0; 0:03� has been studied by
single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the anti-
ferromagnetic wave vector k3 � 0:35c�, we have shown that the inverse energy width ��k3�, i.e., the
inverse correlation time, depends on temperature as ��k3� � c1 � c2T

3=2�0:1, where c1 and c2 are
x dependent constants, in a low temperature range. This critical exponent 3=2� 0:1 proves that the
quantum critical point is controlled by that of the itinerant antiferromagnet.
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Quantum critical points (QCP) separating ferromagnetic
or antiferromagnetic states from paramagnetic Fermi liq-
uid states in strongly correlated electron systems have been
investigated for decades. Successful descriptions of critical
behavior close to QCPs were traditionally provided by the
self-consistent renormalization (SCR) theory of spin
fluctuations [1,2] for d-electron systems based on the
Hubbard model. The mean-field-type approximations
used in the SCR theory were justified by the renormaliza-
tion group studies [3] based on the Hertz effective action
above upper critical dimensions. For the ferromagnetic
QCP, theoretical predictions were supported by experimen-
tal studies of d-electron systems [1,4]. In contrast there is
little experimental understanding of the antiferromagnetic
QCP [2].

A recent intriguing issue of QCP under controversial
debate is directed toward revealing relevant fixed points for
antiferromagnetic QCPs in heavy-fermion systems [5]. In
energy scales much lower than the Kondo temperature TK,
f and conduction electrons form composite quasiparticles
with a large mass renormalization in paramagnetic heavy
fermions. By tuning a certain parameter, e.g., pressure or
concentration, an antiferromagnetic long range order
emerges from the Fermi liquid state. In a weak coupling
picture, it has been hypothesized that the same QCP as the
d-electron itinerant antiferromagnet, referred to as spin
density wave (SDW) type QCP, is relevant to the heavy-
fermion QCP [5,6].

However, despite a number of experimental studies of
heavy-fermion systems showing non-Fermi liquid behav-
ior, none of them definitely supports the SDW QCP [7–9].
This stems partly from the experimental difficulty in
measuring weakly divergent quantities around QCP espe-
cially for bulk properties, which has been also the case for
d-electron itinerant antiferromagnets [2]. On the contrary,
several recent experiments suggest the possibility of a
novel strong coupling picture of the QCP [5,10,11].
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Among these studies direct measurements of the diverging
spin fluctuation using single-crystalline neutron scattering
for the heavy fermion CeCu5:9Au0:1 provided interesting
insight [10]. On the basis of the observed E=T scaling with
an anomalous exponent [10] and effective two space di-
mensions [12], a scenario of a locally critical QCP was
proposed [5,13]. In contrast to the SDW QCP, this theory
stresses that separation of f spin from the quasiparticle
state occurs abruptly at the QCP.

In the present work, we have studied an antiferromag-
netic QCP of another heavy-fermion system
Ce�Ru1�xRhx�2Si2 �x � 0; 0:03� using single-crystalline
neutron scattering. Stoichiometric CeRu2Si2 is an arche-
typal paramagnetic heavy-fermion with enhanced C=T ’
350 mJ=K2 mol and TK ’ 24 K [14]. Extensive neutron-
scattering studies of CeRu2Si2 [15] have shown that spin
fluctuations possessing three-dimensional (d � 3) charac-
ter are excellently described by the SCR theory for heavy
fermions [6]. A small amount of Rh doping x > xc ’ 0:04
[16] induces an antiferromagnetic phase [see Fig. 1(a)] of
the sinusoidally modulated structure with the wave vector
k3 � 0:35c� [17].

The Rh doping modifies exchange interactions, while
keeping TK constant [16], and brings about the antiferro-
magnetic phase in the concentration range xc < x< 0:35.
The dome structure of this phase and another antiferro-
magnetic phase with the modulation vector �12

1
2 0� in the

higher concentration range 0:6< x suggests a certain frus-
tration effect among exchange interactions. Samples nearly
tuned to the lowest concentration QCP (x� xc) show non-
divergent C=T�T ! 0� [18] and �� / T3=2 [see Fig. 1(b)],
which are consistent with the SDW QCP in d � 3. Thus
one can expect that Ce�Ru1�xRhx�2Si2 (x & xc) is suited to
investigate the SDW QCP without disorder effects. On the
other hand, non-Fermi liquid behavior observed in the
higher concentration range 0:35< x was reported to be
influenced by disorders [19,20].
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FIG. 1 (color online). (a) The phase diagram and TK of
Ce�Ru1�xRhx�2Si2 are reproduced from Refs. [16,17].
(b) Resistivity of the sample with x � 0:03 is plotted as a
function of T3=2. Constant-E scans taken with E � 0:2, 0.4,
0.6, and 1.2 meV along (c) Q � �H; 0; 0:65� and (d) �1; 0; L�
lines for the sample with x � 0:03. Data of T � 1:5 and 4 K are
shifted by 0.25 and 0:1 emu=mol Ce, respectively, for clarity.
The curves in (c) and (d) are calculations using Eqs. (2a) and
(2b), corrected for resolution functions with the same fit parame-
ter as those shown in Fig. 2.
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In order to experimentally show the SDW QCP in d � 3,
spin correlation studied by the renormalization group the-
ory [3,21] should be measured directly by neutron scatter-
ing. The theory of the SDW QCP shows that the wave-
vector dependent susceptibility for the tuned sample (x �
xc) diverges as ��k3� / T�3=2 [1,3], or the characteristic
energy of the spin fluctuation, i.e., the inverse correlation
time, depends on temperature as ��k3� / ��k3�

�1 / T3=2.
By taking the detuning effect (x < xc) into account, the
leading two terms of ��k3� computed by the renormaliza-
tion group theory [3,21] are given by

��k3� � c1 � c2T3=2; (1)

where c1 and c2 are x dependent constants. This equation is
an approximation in the temperature range TFL 	 T 	
TK, where TFL is a crossover temperature below which the
system shows the Fermi liquid behavior [3,21]. In the
present work, we have accurately measured ��k3� and
01640
have shown that it agrees well with Eq. (1) for both the
nearly tuned sample x � 0:03 and the stoichiometric sam-
ple x � 0, which indicates that disorder does not influence
the critical behavior.

Neutron-scattering measurements were performed on
the triple-axis spectrometer HER at the Japan Atomic
Energy Research Institute. It was operated using final
energies of Ef � 3:1 and 2.4 meV providing energy reso-
lutions of 0.1 and 0.05 meV (full width at half maximum),
respectively, at elastic positions. Single crystals with a total
weight of 19 g (x � 0) and 17 g (x � 0:03) were grown by
the Czochralski method. Two sets of multicrystal samples
aligned together were mounted in a He flow cryostat so as
to measure a �h0l� scattering plane. All the data shown are
converted to the dynamical susceptibility. It is scaled to
absolute units by comparison with the intensity of a stan-
dard vanadium sample. We note that a new point of the
present work is unprecedented experimental accuracy in
determining the critical exponent [3=2 in Eq. (1)] using
large samples and long counting time. This has enabled us
to determine the singularity of QCP and to make a quali-
tative conclusion of the universality class. In the pioneering
work using the related compound Ce1�xLaxRu2Si2 [8,22],
Eq. (1) has been discussed assuming the fixed value of the
exponent, which could be determined only with an order
larger experimental error.

The imaginary part of the dynamical susceptibility at
Q � k3 � q with small jqj and jEj is predicted to be
approximated by

Im��k3 � q; E� �
��k3���k3�E

E2 � ��k3 � q�
2 ; (2a)

��k3 � q� � Dc
�2
c � q2

c � F�q2
a � q2

b��; (2b)

where Dc and F are T independent parameters, and �c is
inverse correlation length along the c axis [23]. This ex-
pansion form with the T independent product ��k3���k3�
has been used in the SCR [2,6] and renormalization group
[21] theories. The two parameters Dc and F were deter-
mined by using constant-Q and constant-E scans for both
samples with x � 0 [15] and 0.03 at T � 1:5 K. These data
were fitted to Eqs. (2a) and (2b) convolved with the reso-
lution functions. In Figs. 1(c) and 1(d) we show constant-E
scans through the antiferromagnetic wave vector Q �
�101� � k3 and the fit curves for the sample with x �
0:03. The good quality of fitting indicates that Eqs. (2a)
and (2b) well describe the experimental data at T � 1:5 K.
We obtained concentration independent values of the pa-
rameters Dc � 98� 4�meV �A2� and F � 0:12� 0:01.

Temperature dependence of ��k3� � Dc�
2
c has been

determined by performing constant-Q scans taken at Q �
�101� � k3 with much higher statistical accuracy than
previous measurements [15,22]. These scan data were
fitted to Eq. (2a) convolved with the resolution functions,
where there are two adjustable parameters ��k3� and ��k3�.
Several fit results of the constant-Q scans for the samples
with x � 0 and 0.03 are shown in Fig. 2. From these figures
1-2
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FIG. 3 (color online). Energy width ��k3� of the Lorentzian
form Eq. (2a) is plotted as a function of T3=2. Full lines are fit to
��k3� � c1 � c2T

v with adjustable parameters c1, c2, and v in
low temperature ranges, where data are displayed by open
symbols. The dashed line is the calculation [15] using the
SCR theory [6]. The inset shows temperature dependence of
the product ��k3���k3�.
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FIG. 2 (color online). Constant-Q scans measured at the anti-
ferromagnetic wave vector Q � �101� � k3 for the samples with
x � 0 (a) and x � 0:03 (b). Curves are fit results using Eq. (2a)
with two adjustable parameters ��k3� and ��k3�.
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one can see that the quality of fitting is excellent. We also
checked the T independence of the parametersDc and F by
comparing the constant-E scans in Fig. 1 at T � 4 and 8 K
with those calculated using the T dependent ��k3� and
��k3� determined by the constant-Q scans. The calculated
curves in Fig. 1, which have no adjustable parameters for
T � 4 and 8 K, agree reasonably well with the observa-
tions. Thus we conclude that the theoretical approximation
of Eqs. (2) has been experimentally confirmed and that the
fit parameter ��k3� has been determined very precisely.

The temperature dependence of ��k3� is shown in
Fig. 3 by plotting data as a function of T3=2. At low
temperatures observed data clearly agree with the linear
behavior of Eq. (1). In fact, by least squares fitting
01640
we obtained ��k3� � �0:67� 0:01� � �0:0095�
0:0021�T1:53�0:08 (in units of meV) in 1:5< T < 16 K
for the sample with x � 0 and ��k3� � �0:129� 0:007� �
�0:020� 0:003�T1:49�0:07 in 1:5< T < 8 K for x � 0:03.
Therefore we conclude that the observed critical exponent
3=2� 0:1 is in agreement with the theoretical value 3=2
and consequently that the temperature dependence of the
spin fluctuation is controlled by the SDW QCP in d � 3.
The same exponent for both x � 0 and 0.03 samples en-
sures that the randomness due to Rh doping does not affect
the criticality. The temperature independence of
��k3���k3� was also confirmed as shown in the inset of
Fig. 3.

The constant c1 in Eq. (1) is proportional to the theo-
retical tuning parameter, a coefficient of the quadratic
terms of the Hertz effective action, and c1 / xc � x is
normally assumed [3]. This assumption is consistent with
the observed values of c1 and the critical concentration
xc � 0:04� 0:005. In contrast to this agreement, the con-
centration dependence of c2, c2�x � 0:03�=c2�x � 0� � 2,
may suggest a certain difficulty in the theoretical interpre-
tation. The constant c2, being proportional to the coeffi-
cient of the quartic term of the Hertz effective action, is
usually supposed to vary slowly in the concentration range
of interest [3]. The appreciable variation of c2 seems to
suggest unknown perturbations for Ce�Ru1�xRhx�2Si2. In
terms of the SCR theories, the variation of c2 may be
accounted for by the adjustable mode-mode coupling con-
1-3
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stant ( / c2) that is used in the phenomenological SCR
theory developed for d-electron systems [1,2]. Despite this
problem, we think that the critical exponent 3=2 deter-
mined by basic characteristics of the system, the space
dimension d � 3 and the dynamical exponent z � 2, is
more important and decisive to conclude the nature of
the QCP.

An advantage of the present neutron-scattering study is
that Eq. (1) holds in a wider temperature range compared to
those of indirect measurements using bulk properties, e.g.,
C=T � �0 � �T1=2 or �� / T3=2 [8,18]. Theoretically
Eq. (1) is an approximation in the temperature range
TFL 	 T 	 TK, where TFL is the crossover temperature
to the Fermi liquid state [3,21]. The temperature range in
which Eq. (1) is observable can be discussed quantitatively
using the SCR theory [6]. In Fig. 3, the dashed line repro-
duces the SCR computation of ��k3� for CeRu2Si2 based
on the previous neutron-scattering study [15]. Apart from
discrepancy of the coefficient c2, one can see that the T3=2

dependence of Eq. (1) is a good approximation for the SCR
curve in the T range 2:5< T < 13 K �4< T3=2 < 47�,
which agrees with that of the observed data for
CeRu2Si2. Since the lower bound temperature is shown
to be proportional to the tuning parameter by the renor-
malization group theory [3,21], the T3=2 dependence can be
expected in a T range of 0:5 K< T�0:35< T3=2� for the
sample with x � 0:03. The smaller T range of the T3=2

dependence for x � 0:03 is probably related to the larger
constant c2�x � 0:03�. We note that below 2.5 K the SCR
computation of ��k3� for x � 0 [15] is approximated by the
Fermi liquid behavior of ��k3; T� � ��k3; 0� / T2 [21],
which is not clearly seen within the present experimental
error.

In connection with neutron-scattering experiments of
CeCu5:9Au0:1 [10,12], it was theoretically predicted [13]
that the locally critical QCP is relevant for the two-
dimensional spin fluctuation, in agreement with the experi-
ments of CeCu5:9Au0:1. This theory also predicted that the
SDW QCP is relevant for the three-dimensional spin fluc-
tuation, which is in accord with the present results. Finally
we note that the present work is the first clear experimental
verification of the SDW QCP to our knowledge among
single-crystalline neutron-scattering studies on QCP or
non-Fermi liquid behavior of heavy fermions, e.g.,
Refs. [10,12,22,24–26] and d-electron systems, e.g.,
Refs. [27,28]. Assuming that criticalities of QCPs are
classified into a limited number of universality classes,
we expect that the SDW QCP remains to be observed in
other systems.

In summary, we have demonstrated that the quantum
critical behavior of the heavy fermion Ce�Ru1�xRhx�2Si2 is
controlled by the SDW-type QCP in three space dimen-
sions. The inverse correlation time, i.e., energy width ��k3�

of the dynamical susceptibility, shows the T3=2 dependence
predicted by the renormalization group and SCR theories.
01640
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