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Electrical Discharge in Capillary Breakup: Controlling the Charge of a Droplet
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We studied the detachment of sessile droplets of conductive liquids from an immersed wire by reducing
the contact angle using ac electrowetting. Upon detachment, the droplets acquire a certain amount of
charge, which is shown to be controlled by a dimensionless parameter «. « describes the interplay
between the diverging Ohmic resistance of the breaking capillary neck and the ac frequency. In the
specific configuration of the present experiment, discharging at high frequency leads to self-excited
oscillations in which the droplets periodically detach from and reattach to the wire.
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The manipulation of tiny amounts of liquids has become
a paradigm in various fields of applied physics such as
printing and coating technology or biotechnology related
microfluidics. Pressure gradients for driving fluid motion
are traditionally generated using mechanical, thermome-
chanical, or electrical actuators. Given the intrinsically
high surface to volume ratio in microfluidics, on-demand
variations of interfacial energies such as thermocapillary
effects [1] and electrowetting [2] have received increasing
attention in recent years. The interplay of surface tension
and electric fields can also be used to generate liquid jets
[3] and droplets, for example in electrospray ionization
[4,5] or in continuous ink-jet printing [6]. The role of the
electric field in these examples is twofold: on the one hand,
it drives the instability leading to the generation and de-
tachment of microdroplets from the reservoir. On the other
hand, it is responsible for the charge acquired by the
detached droplets. In common configurations using dc
voltage both aspects are tightly coupled. In the present
Letter, we use low frequency ac electrowetting to detach
liquid droplets from an electrode. We will show that the
amount of charge acquired by a droplet detaching can be
controlled by tuning the electrical properties of the liquid
and the applied ac frequency. In this process, the breakup
of the capillary neck in the late stage of the detachment
process plays a crucial role. In conjunction with the finite
conductivity of typical aqueous liquids, the algebraic de-
crease of the neck diameter [7,8] gives rise to a continuous
divergence of the neck’s Ohmic resistance. The speed of
this divergence compared to the ac frequency determines to
what extent the detaching droplet can be discharged.

Droplets of a conductive liquid (volume = 1 ul, various
mixtures of deionized water, glycerol, and NaCl) were
deposited on conductive substrates that are covered by a
thin insulating layer and a hydrophobic top coating (1 um
thick thermally grown SiO, covered by a hydrophobic self-
assembled monolayer of Octadecyltrichlorosilane [9]).
The composition of the liquid was varied to cover a range
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of viscosities 1 and conductivities o from 2 mPas to
70 mPas and from 0.1 to 10 mS/cm, respectively. The
entire system was immersed in a silicone oil bath (Fluka,
viscosity 7 = 5 mPas) in order to reduce both contact
angle hysteresis and the influence of gravity. High-speed
video images with a maximum frame rate up to 16 000 fps
were recorded using a high-speed video camera (Photron
fastcam ultima 512). Upon applying an ac voltage U,
ranging from O to 100 V (rms at frequencies f =
1-20 kHz) between the substrate and a platinum wire
(electrode radius r, = 125 um) immersed into droplet,
the apparent contact angle 6;(U,) decreased following
the well-known electrowetting equation [2]:

cosf; (Uy) = cosfy + 2LU(2), (1)
Y

where 0y = 0,(U, =0) is Young’s contact angle
(=155 deg for water) and ¢ = gye,/T is the droplet-
substrate capacitance per unit area. vy is the surface tension
of the liquid in the surrounding fluid (y = 38 mN/m for
pure water vs silicone oil). €, and T are the dielectric
constant and the thickness of the insulating layer, respec-
tively, and g the electric susceptibility of vacuum.

Equation (1) holds for a droplet with a well-defined
potential. If instead an electrically isolated droplet with a
fixed charge ¢ is considered, the equilibrium contact angle
reads

2

q
2CAgy’

cosf; (g) = cosfy + 2)
where Ay is the solid-droplet interfacial area and Cy =
cAy is the total capacitance. Equation (2) implies that the
charge of an isolated droplet can be determined from its
contact angle.

In the present experiments we placed the electrode at a
distance d from the solid substrate such that it was barely
immersed into the drop at zero voltage (see Fig. 1). Upon
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FIG. 1. Electrowetting setup with schematic droplet morphol-
ogies (not to scale) and electrical equivalent circuit. The current
is measured via the resistor R,, = 10 k().

increasing the voltage the contact angle and thus the height
of the drop decreases following Eq. (1), eventually leading
to the formation of a capillary neck. At a certain
d-dependent critical voltage the capillary neck becomes
unstable and breaks. The value of this critical voltage can
be derived from Rayleigh’s argument that the neck be-
comes unstable when its height is of the order of its
circumference [10]. Based on this criterion and on addi-
tional geometric considerations, a morphological diagram
can be constructed which gives the ranges of stability for
both the attached and the detached droplet morphologies as
a function of d and U,. In analogy with the case of
capillary bridges between parallel plates [11,12], we find
that there is a region within the d-U, plane in which both
morphologies are unstable and the droplet oscillates peri-
odically between the attached and the detached state [13].

Here we are interested in the charge acquired by the
droplet as it detaches from the electrode. Depending on the
applied ac frequency and the conductivity of the liquid we
observe two distinct behaviors. At low ac frequency or high
conductivity (regime I) the contact angle after detachment
[at t =0 in Fig. 2(a)] remains close to its low value
[corresponding to Eq. (1)], except for a minor increase
[Fig. 2(a)]. (The size of this minor step varies from detach-
ment event to detachment event.) Subsequently, 6 in-
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FIG. 2. (a) Contact angle vs time for f = 1kHz (X) and
10 kHz (@) showing the two regimes. (b) Pictures of the drop:
1 ms before breakup (A) and 5 ms after breakup (regime I: B,
regime II: B,). The diameter of the electrode is 250 pum [22].

creases gradually on a time scale of tens of seconds. This
regime is easily understood by considering the extreme
case of detachment at dc voltage: immediately after de-
tachment the droplet has a charge gy = CU,, which gives
rise to the same contact angle as prior to the detachment
[cf. Egs. (1) and (2)]. (For the 1 kHz data in Fig. 2 we find
q = 0.9¢,.) The subsequent gradual increase is due to a
slow discharge via leakage currents [12]. In contrast, at
high ac frequency and/or low conductivity (regime II) a
substantially higher and perfectly reproducible value of
is found within a few ms after detachment. As a conse-
quence of this abrupt change in the boundary condition, the
contact line begins to move (at a speed up to several tens of
mm/s) and the droplet relaxes back towards a spherical cap
with a higher contact angle within =10 ms to =100 ms
depending on the viscosity and the drop size. During this
relaxation the droplet reconnects to the electrode [at t =
12 ms in Fig. 2(a)]. Once reconnected, the contact angle
decreases and the droplet begins to spread again until the
capillary neck breaks once more and the oscillation cycle
starts all over again. The sharp increase in contact angle
indicates that the droplet charge decreases substantially
during detachment. Inserting the value of # in Eq. (2), we
find g = 0.25¢,. This value should be considered an upper
limit: during the oscillation we can only measure the
dynamic contact angle which is known to be lower than
the equilibrium value for a receding contact line. In order
to determine the charge more quantitatively, we measured
the current in the system (Fig. 3). In the connected state
(#,0), there is a large capacitive current / due to the capaci-
tance between the droplet and the substrate (cf. Fig. 1),
whereas in the disconnected state / is essentially zero. In
regime I, the current retains its full amplitude and drops to
zero upon detachment rather abruptly [Fig. 3(a)]. In re-
gime II, however, the current amplitude decreases continu-
ously to zero over several oscillation periods [Fig. 3(b)].
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FIG. 3. Electrical current vs time close to breakup. Solid lines:
experimental data; +: fit curves based on Eq. (4). (a) 1 kHz
(regime I): « = 1.3, uw =1, (b) 10 kHz (regime II): @ = 5.5,
m=1
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The droplet charge can be obtained by integrating these
curves. While the result for regime I depends strongly on
the phase ¢ of the ac voltage at ¢+ = 0, the continuous
decrease in regime II always leads to discharging indepen-
dent of ¢. To understand the physics of the discharging
mechanism, we note first that the time constant RC in the
electrical equivalent circuit in Fig. 1 diverges because the
resistance R, = R(t) of the capillary neck diverges as the
pinch off is approached. As soon as RC = f~! the droplet
charge cannot follow the applied ac voltage anymore.
Whether the detaching droplet will be discharged or not
depends on how much time (in units of f~!) is left until the
ultimate break off.

Before solving the differential equation of the driven RC
circuit in Fig. 1 for the charge we need to analyze the
divergence of R(r) [14]. R(z) is determined by the electrical
conductivity of the liquid and by the time-dependent ge-
ometry of the capillary neck. Within a few percent accu-
racy it is given by [15,16]

R() = ] l_da 3)

=z omr(z, 1)

where z, denotes the lower edge of a suitably chosen box
of width 2r, around the capillary neck [approximately the
size of the insets in Fig. 2(b)]. The result is shown in Fig. 4
[17]. On the time scale of interest for the electrical dis-
charge (=0.1-1 ms), the divergence can be reasonably
well approximated by a power law R(r) = Ry(t/1y)™*
with 1 < u < 1.5, where Ry, = (or,)”! is the character-
istic initial neck resistance and ¢, = 0.5 ms is the charac-
teristic hydrodynamic time scale for the breakup [18]. This
is indeed expected on the basis of earlier studies on the
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FIG. 4. Capillary neck resistance vs time prior to breakup.
Symbols: experimental data (f = 10 kHz; *: n = 2 mPas; X:
n = 70 mPas). Solid lines: numerical computational fluid dy-
namics (CFD) calculations (CFD-ACE + package). Inset: mini-
mum radius vs time. Symbols: experimental data; solid lines:
CFD calculations; dashed lines: theoretical expectations for an

inviscid outer fluid (v = 2/3 and v = 1 for the inertial and the
viscous case, respectively).

singularity of breaking capillary necks [7,8,19,20]. It was
shown that the surface profiles are self similar and that the
minimal radius r,, of the capillary neck vanishes algebrai-
cally, i.e., r,, = t”. Depending on whether inertia or vis-
cosity is the dominant force opposing the driving capillary
forces, v = 2/3 or v = 1, respectively, is found. For a few
simple neck geometries, the connection between » and w
can be given explicitly: for a cylindrical neck with constant
length R « r;,2, i.e., u = 2. For a cylindrical neck with a
length scaling o ¢'/2 [21] we have u = 2v — 1/2; for a
cone-shaped geometry u = v [15,16]. The two latter sce-
narios suggest a possible value of u between 2/3 and 3/2.
However, both v and the characteristic shape can vary
during a transition, allowing for various crossovers [8].
The inset of Fig. 4 shows the typical crossover from the
initial inertia-dominated to the late viscosity-dominated
regime around 7 = 1 ms for the high viscosity droplet.
(For the low-viscosity droplet, this transition is expected
to occur at shorter times.)

While the exact value of w thus depends on various
details, we will show now that the discharging mechanism
itself is rather robust. Taking R = R(z/f,) ™* in series with
the constant capacitance C, the differential equation for the
dimensionless charge Q = ¢/CU,, and in terms of the
dimensionless time 7 = 27t reads

I+ug—p g = qin(7
alTHT i + Q = sin(f + @) @
where a = 27f(R,Cth)"/ 1+

is a dimensionless number that controls the behavior of the
system. To determine the residual charge Q(¢ = 0) on the
droplet, we solved Eq. (4) numerically for fixed & and .
Q(t = 0) turns out to be distributed between 0 and its
maximal value Qp,,x = max,eo2,Q(t = 0), depending
on the value of ¢. In Fig. 5 we plot Q... as a function of «.
Independent of the exact value of u the droplets are found
to discharge for a > 1, whereas for @ = 1, Q. .« ap-
proaches unity. The former leads to a contact angle after
pinch off of § = 0y, the latter to § = 6;, in agreement
with the experimental observation. The former gives rise to
fast regular oscillations (regime I), the latter to the slow
contact angle relaxation after detachment (regime II).
Equation (4) can also be used to fit the current in the system
by varying « and ¢ using the previously determined value
of u (see Fig. 3). The fits and the experimental data are
essentially indistinguishable. The corresponding values of
« for a series of droplets with varying conductivity and
viscosity are shown in the inset of Fig. 5. The expected
linear dependence on f is confirmed within the experimen-
tal accuracy. Furthermore, the slope of the curves increases
with increasing viscosity and decreases with increasing
conductivity, as expected from the increase of 7, with
increasing 7 and decrease of R, with increasing o-.

In the case of the present electrowetting experiments,
discharging of droplets during pinch off allows for the
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FIG. 5. Numerical results of the model: droplet charge after
breakup vs « for various values of u (dashed line u = 3/2, dots
u =1, full line u = 2/3). Inset: Values of « obtained from the
fits of the electrical signal showing the linear behavior with the
frequency for various viscosities (X7 mPas; *80 mPas) and
conductivities (from top to bottom 1.0, 2.3, 0.8,1.8, 7.1 mS/cm).

occurrence of fast regular oscillations between the attached
and the detached state. These oscillations can be used to
promote mixing within liquid droplets, as currently under
investigation in our group [2]. For millimeter sized drop-
lets, mixing can be speeded up by 2 orders of magnitude in
time compared to diffusion. However, the applicability of
the mechanism presented here is much broader. Using the
dimensionless parameter « the conditions for efficient
droplet discharge can be predicted for arbitrary configura-
tions in which droplets are created by using an electric
field-induced instability of a liquid surface. In fact, existing
designs of droplet generators for continuous ink-jet print-
ing or for electrospraying have suitable dimensions to
apply the discharging mechanism. An unresolved funda-
mental issue is the coupling between the electric fields and
the hydrodynamics of the pinch off. The zoomed views of
the capillary neck in Fig. 2(b) show the capillary neck
immediately (=60 ws) before the breakup. Obviously,
the capillary neck becomes significantly longer in the
low frequency case. Tentatively, we attribute this observa-
tion to the presence of stronger electric fields along the z
axis at low frequency. This topic will be addressed in more
detail in future work.
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