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An Electric Bottle for Colloids
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Particle concentration is a dominant control parameter for colloids and other soft matter systems. We
demonstrate a simple technique, ‘‘dielectrophoretic equilibrium,’’ implemented as an ‘‘electric bottle,’’ a
planar capacitor in a larger volume. The uniform E field in the capacitor traps particles in this force-free
region at a higher density than in the zero field regions outside. We show how the technique measures the
equation of state and we initiate and grow colloidal crystals. ‘‘Dielectrophoretic equilibria’’ enable the
study of a complete concentration-dependent phase diagram from a single microscopic sample, obviating
the previous need for preparing a large number of samples.

DOI: 10.1103/PhysRevLett.96.015703 PACS numbers: 82.70.Dd
In a uniform electric field E neutral particles of volume
vp lower their energy by ��"effE2=2�vp, but feel no net
force. The effective dielectric constant "eff is an interesting
function of the complex frequency-dependent conductivity
or dielectric constant of the particle and solvent. If "eff is
positive then from statistical mechanics the particle density
will be higher in a region of higher field. That is the simple
principle we exploit. In a field gradient, the particles ex-
perience a force r��"effE

2=2�vp and undergo motion,
called dielectrophoresis. Dielectrophoresis has been used
in many ways to control the behavior of colloidal particles,
for particle separation, characterization, and transport
[1,2]. Typically, such work has been used in dilute suspen-
sions to move and sort individual colloidal particles or
small groups of such particles. The difference between
conventional dielectrophoresis and the present technique
is that we use a finite system and let it come to equilibrium
with the osmotic pressure balancing the electrostatic
driving force. Equivalently we may view the energy
�"effE

2=2 as an additional term in the particle chemical
potential, �. The requirement of constant � in a
system with open particle exchange then lowers the con-
centration in the low field region relative to the high field
region.

To test and quantify these ideas we have performed
experiments with a suspension of poly(methylmethacry-
late) colloids. The particles are sterically stabilized with
PHSA (polyhydoxystearic acid) and suspended in near
index matching solvents. Such systems behave as hard
spheres [3–5]. To prevent sedimentation, which would
also induce density gradients, the suspensions have been
formulated in a density matching mixture of decahydro-
naphthalene and tetrachloroethylene. The particles have
been dyed with Rhodamine 6G for fluorescence confocal
microscopy. Hard spheres are particularly appropriate for
this study as well as interesting in their own right. With
only an excluded volume repulsive interaction and no
attractive interaction, their phase behavior is entirely con-
trolled by the volume fraction, �. Below � � 0:494, the
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dispersion assumes an isotropic fluid phase, above � �
0:545 the system is crystalline, and for 0:494<�< 0:545
the two phases coexist. For slightly polydisperse samples
in normal gravity a glass phase exists above �� 0:58
[5,6]. Gravity and temperature gradients have previously
been used to measure interactions and control density. A
comparison with preliminary dielectrophoretic studies is
found in Ref. [7].

Experiments in a confocal microscope require only mi-
croscopic sample quantities. Furthermore, equilibration
times are relatively short, high fields are available at low
voltages, and there is an extensive literature for determin-
ing structure and particle density [7]. Our cell configura-
tion is shown schematically in Fig. 1. A capacitor is formed
by evaporating thin transparent electrodes (200 Å
Au=20 �A Cr for data shown below) spanning �1=3 of
the cell area. For insulating samples the electrodes can be
either in contact with the suspension or outside the cover
slip (shown). The cell is filled with a suspension having an
initial average volume fraction appropriate for the region
of the phase diagram of interest (e.g., liquid, crystal-liquid,
glass-crystal).

Figure 2 shows the results for a sample at an initially low
fraction (�� 0:12). As expected, the particles have be-
come dense in the central region, are sparse outside the
capacitor plates, and show a sharp density gradient near the
edge of the capacitor. The particle number is measured
using confocal microscopy and particle tracking algo-
rithms and converted to a volume fraction by comparing
with a sample of known volume fraction. Scanning across
the entire length of the cell yields a volume fraction profile.
The observed density profile and that predicted from sta-
tistical mechanics with measured properties of the particles
and solvent (no adjustable parameters) are shown in the
lower left for two different fields. Calculated and measured
profiles agree remarkably well. Of particular interest here
is that the agreement is equally good over a factor of 2
change in applied field. As discussed later, this implies that
the equation of state and the interparticle correlation func-
3-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.015703


FIG. 2. Equilibrium properties of a cell filled initially with a
volume fraction �� 0:12. (a) Cell schematic. (b) Confocal
micrograph of the region near the strong field gradient after
24 h, with the maximum field at 6 kV=cm. There is a steplike
change between the constant high and low density regions. In
both regions the particles undergo Brownian motion and there is
no net particle flow. (c) The plots (displaced for clarity) show the
measured (points) and calculated (lines) particle volume fraction
profiles. Sharper data are for 150 volts applied across the
0.480 mm cell, broader data for 80 V. The calculated lines
have no free parameters. The asymmetry is due to the measured
misalignment of upper and lower electrodes.

FIG. 1. (a) Schematic of an ‘‘electric bottle,’’ constructed with
microscope slides and cover slips. (b) Midplane field profile
calculated for a typical experimental cell as shown in (a).
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tion are not significantly changed from their zero field
values.

In denser samples (�� 0:50), we can control crystal
formation, Fig. 3. Just as before, the density increases in
the central region, but now the densification pushes the
volume fraction above the freezing point and crystals form.
There is a sharp interface between the liquid and crystal-
line regions evident in both the confocal microscope im-
age, which shows particles with crystalline order adjacent
to the disordered liquid, and in the macroscopic image,
which shows the Bragg scattering from the well-defined
crystallites adjacent to the diffusely scattering liquid.
Measurements of the concentration profile agree with pre-
dictions in this concentration region as well. The observed
crystal structure is random hexagonally close packed, as is
seen in other hard sphere experiments. When the electric
field is turned off, the sample relaxes to coexistence be-
tween the central crystal region with volume fraction � �
0:545 and a surrounding fluid phase with � � 0:494. This
separation is thermodynamically stable, so the system is
observed to remain separated for at least a month after the
removal of the electric field. Typically in a coexistence
sample, small crystallites nucleate and grow. Here, we have
been able to control the stable crystal-liquid interface.

The calculation of the particle density profile requires
knowledge of the dielectric constant of the particles, "p,
and solvent, "m (at the applied frequency), and the equation
of state. At very low particle density and field "eff is given
01570
by the Clausius-Mossetti equation �"eff � 3�"m;� �
�"p � "m�=�"p � 2"m��, the electric field is that from a
capacitor with spatially uniform dielectrics, and the inter-
particle interactions from the induced dipoles are negli-
gible. In this case the ratio of in/out particle density is just
given by � � const � kT ln�nout� � kT ln�nin� � "effE

2

vp=2 which produces the simple Boltzmann result
�nin=nout� � exp��"effE2vp=2kT�. Thus, the density pro-
file depends exponentially on the field profile. For a more
concentrated suspension and/or higher fields, interparticle
interactions become important, and the electric field must
be calculated self-consistently in terms of the spatially
varying suspension dielectric constant [8] which in turn
depends on the local field and the induced interparticle
interactions.
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FIG. 3. Equilibrium properties of a cell filled initially to ��
0:50. (a) Confocal micrographs of the interface between crystal
and liquid phases. (b) Measured and calculated volume fraction
profile. (c) Low magnification optical image shows Bragg scat-
tering from crystallites under electrodes and diffuse scattering
from liquid in lower density region outside the electric ‘‘bottle.’’
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Fortunately, for aligned dipoles in spherical, cubic, and
hexagonal symmetry the dipole-dipole interaction aver-
ages to zero. If the electric field is small enough to leave
the symmetry unchanged, the only energy that needs to be
taken into account is the macroscopic electrostatic energy
difference, "eff���E

2=2. The effective dielectric constant
depends on the underlying particle structure, but rigorous
bounds on its possible value [9] exist. For systems with
small dielectric mismatch we can approximate the effec-
tive particle dielectric constant as "eff��� � 3��"m=�1�
���2� [11]. Given the voltage on the capacitor and the
spatial distribution of particles, we can calculate numeri-
cally the electric field in the cell. The requirement of
constant chemical potential and the hard sphere chemical
potential calculated from the liquid and crystalline equa-
tion of state [12,13] allow us to calculate the induced
density profile given the electric field. We can then iter-
atively calculate the electric field and concentration pro-
files until all are stationary. The calculated curves in Fig. 2
01570
were obtained by this iteration with no adjustable
parameters.

The above procedure uses information on the equation
of state to obtain the density profile. The inverse problem is
much more straightforward. If we measure the density
profile ��x�, we know the local value of the suspension
dielectric constant "s ���x�� � "m�1��� � "p� without
iteration [9]. Chemical potential equilibrium then directly
yields the equation of state. Unfortunately the sharp field
gradient at the edge of the capacitor makes evaluation
difficult in this geometry. A wedge geometry of plates
would be more appropriate. For the simple capacitor ar-
rangement in the present experiment the equation of state
can be obtained by changing the voltage on the plates.

We have neglected the possibility that field induced
forces will change the symmetry from spherical or cubic.
The amplitude of such a distortion would be proportional
to the dipole-induced stress over an elastic constant G,
"effE

2=G. This would unbalance the cancellation of in-
duced dipolar forces and lead to an energy decrease [14] of
order "eff

2E4=G. Experimentally we can easily tell
whether this term is significant by looking for nonlineari-
ties in E2 by changing the applied voltage. As we have seen
in Fig. 2 the fit to a simple hard sphere equation of state
does not change with E over the field range studied. For
much higher fields the structure will indeed change and
eventually give rise to chains of dipoles characteristic of
electrorheological fluids [15].

Gravity [16,17] and temperature gradients [18] have
previously been used to produce density profiles in colloi-
dal systems, but neither allows the precise control available
with electric fields. Dielectrophoretic equilibrium is
applicable to many soft condensed matter systems.
For E � 1000 V=cm, the energy density "0E

2=2�
0:44 dynes=cm2 is comparable to elastic constants and
pressures in systems with characteristic interparticle spac-
ing or unit cell dimensions of L� 1 micron (i.e.,
kBT=L3 � "0E2=2). Such easily attainable fields should
be useful in controlling not only density but composition
(of particle mixtures) and orientation (of anisotropic par-
ticle and crystals) and in directing self-assembly processes
(e.g., nucleation and growth). Combined with flow fields in
microfluidic devices the dielectrophoretic steady state can
be used for separations. The fact that "eff is also control-
lable with frequency in aqueous and electrolyte suspen-
sions (to the extent that the sign is even reversible), and that
the field can be varied with time, creates the potential for
controlling and measuring submicron scale architectures.
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