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Self-Diffusion in a Liquid Complex Plasma
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Self-diffusion has been experimentally studied in a two-dimensional underdamped liquid complex
(dusty) plasma. It was found that the self-diffusion coefficient D increases linearly with the temperature T:
D=!Ea

2 � �0:019� 0:007��T=Tm � 1�, where Tm, !E, and a are the melting temperature, the Einstein
frequency, and the mean particle separation, respectively. No superdiffusion was observed, whereas a
subdiffusion occurred at temperatures close to melting.
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Complex plasmas are mixtures of macroscopic (usually
spherical monodispersed micron-sized) grains with an ion-
electron plasma. These grains charge up negatively and
interact electrostatically with one another; they can be
levitated and confined in a gas discharge and were shown
to form ordered structures [1–4]. Complex plasmas can
exist in different phase states, exhibit phase transitions
[5,6], sustain waves [7–10], and conduct heat [11]. The
motion of every grain can be easily observed with a video
camera in real time and therefore a complex plasma can be
used as a model system [5] of real solids, liquids, and gases
at the kinetic level.

‘‘Diffusion’’ is the mixing of two different substances
due to, e.g., the thermal motion of molecules, whereas
‘‘self-diffusion’’ refers to the motion of a single molecule
in a pure substance. Experimental studies of self-diffusion
in real fluids are very difficult and use indirect methods
such as nuclear magnetic resonance [12], which do not
resolve the motion of individual molecules. In molecular-
dynamics simulations, self-diffusion coefficient can be
easily determined, and it was the subject of many simula-
tion studies including Lennard-Jones model fluids [13] and
Yukawa systems [14–17]. From these simulations, a sim-
ple scaling law for the self-diffusion coefficient has been
found [17]:

D=!Ea2 � 0:0132�T=Tm � 1� � 0:00317;

where !E is the Einstein frequency, a is the particle
separation, and Tm is the melting temperature. This scaling
is obtained in the range of T=Tm � 1 & 10. The Einstein
frequency is the characteristic frequency of oscillations of
particles in the solid phase, defined by
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where m is the mass of the particles and �ij is the particle
interaction potential. The value of D=!Ea

2 is almost in-
dependent of the screening parameter � � a=�D, where
�D is the screening length. The self-diffusion coefficient
can be determined using the Einstein relation [18] if the
trajectories of the moving particles are resolved:
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where �x2
i is the mean-square displacement (MSD) of ith

particle, n is the dimension of the space (n � 2 in our
case), and N is the number of particles.

Diffusive motion of particles has been reported in early
complex plasma experiments [5,6]. Later experiments in
multilayer quasi-two-dimensional complex plasmas [19–
22] studied self-diffusion using MSD curves of particles. It
was found that at the short time scales [22] the particle
motion was ballistic (MSD / t2), at longer times it was
subdiffusive due to caged motion, whereas at even longer
times it became quasidiffusive, i.e., MSD � Dtb, where
coefficient b � 1 would correspond to normal diffusion. A
range of subdiffusive (b < 1) to superdiffusive (b > 1)
motion was observed at intermediate time scales which
tended to become normal or weakly super- (b � 1–1:3)
diffusive at longer times [19–22].

In this Letter, we present experiments on self-diffusion
of particles in a monolayer (two-dimensional) liquid com-
plex plasma, and report measurements of the self-diffusion
coefficient. Unlike the previous experiments, ours were
performed at a very low gas pressure (1 Pa, or
7.5 mTorr), which ensured that the phonon decay length
was ’ 20a for longitudinal phonons (a is the interparticle
distance) and ’ 5a for transverse phonons. The phonon
decay lengths in previous experiments (performed at 250–
500 mTorr), were at least 30 times shorter than in ours
and smaller than the interparticle distance. Long phonon
decay lengths ensure that the complex plasma behaves like
real solids and liquids (and not like colloids), where trans-
port phenomena rely on phonons. We also performed
molecular-dynamics simulations which agreed well with
our experiments.

The experiments were performed in a capacitively
coupled 13.56 MHz radio-frequency (rf) discharge. We
used the experimental setup (shown in Fig. 1), which is
described in detail in Ref. [10]. A plasma was generated by
applying a rf power of 2 W to the lower disk electrode. An
argon flow rate of 1.5 sccm maintained the gas pressure in
the chamber at p � 1:0 Pa.
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FIG. 1. Sketch of apparatus. (a) Oblique view. Spherical par-
ticles charge negatively and form a monolayer levitating in the
plasma sheath above the lower electrode. They are illuminated
with a horizontal sheet of a doubled Nd:YAG laser (532 nm) and
viewed from the top with a video camera. (b) Side view. The
heating of the particle suspension was provided by an instability
caused by a ‘‘perturbation layer’’ of heavier particles levitated
below the main layer. Increasing the number of particles in the
perturbation layer produced a higher kinetic temperature in the
main layer.
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To make a monolayer particle suspension, we injected
monodisperse plastic microspheres into the plasma. The
particles levitated in the plasma sheath above the rf elec-
trode, where they formed a hexagonal lattice. The lattice
was composed of� 5000 particles and its diameter was�
7 cm (particle separation a � 1:01–1:07 mm). The parti-
cles had a diameter of 8:9� 0:1 �m, and a mass of m �
5:57� 10�13 kg. The particle charge and the shielding
parameter were determined as Q � 17000e� 15% and
� 	 a=�D � 1:0 from the spectral analysis of phonons in
the lattice [see Refs. [7,8] ]. The Einstein frequency was
calculated assuming an ideal hexagonal lattice, Yukawa
interaction, and taking into account the interaction of the
particles separated by up to 20 average interparticle dis-
tances. It was found that !E � 13:4 s�1 for our lattice.

The kinetic temperature and the phase state of the par-
ticle suspension were controlled by adding a small number
of larger particles (with diameter 12:7� 0:15 �m and a
mass of 1:62� 10�12 kg). The heavier grains were levi-
tated in the plasma sheath in a ‘‘perturbation layer’’ several
hundred �m below the main layer [Fig. 1(b)] and were
spontaneously accelerated like in a Mach cone experiment
[23]. Unlike in that experiment, they often collided with
one another and heated the lattice instead of producing
wakes. The kinetic temperature of the main particle layer
increased with the number of perturbing particles. In our
experiments these comprised up to 10% of the number of
grains in the main layer. NeitherQ nor �D were affected by
this perturbation layer, because it is located downstream of
the supersonic ion flow in the plasma sheath. The inhomo-
geneity of the temperature across the field of view was
typically less than 20%. Occasional hot spots at the edges
were cropped. They covered only a small fraction of the
field of view.
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To observe the thermal motion of the particles, we illu-
minated the suspension with a horizontal (0:2–0:3 mm
thin) sheet of laser light, and viewed it by a digital video
camera from the top window. 512 images were recorded in
each sequence at 22–154 frames per second. The particle
positions were then identified and traced from one frame to
the next. The particle velocities were calculated from their
displacements in two consecutive frames. The kinetic tem-
perature of the particles was calculated from the width of
the velocity distribution function, which was Maxwellian.

As the kinetic temperature of the particles increased, the
suspension melted at around Tm � 14:5 eV (correspond-
ing to a coupling parameter �eff � 10:6). The coupling
parameter � [1] is the ratio of the potential energy of the
particle interaction to the particle kinetic energy. � is often
normalized by the exponential of the screening parameter
�: �eff � � exp���� [16]. The coupling parameter deter-
mines the phase state of the system. Large �eff correspond
to solids, small values to gases, and �eff ’ 1 characterizes
liquids. The solid-liquid phase transition was reported to
occur at coupling parameters ranging from � � 137 for a
classical 2D layer of electrons on a surface of liquid helium
[24] to � � 10 in a 3D molecular-dynamics simulation of a
hexagonal crystal in a flowing plasma, where the attractive
force of the wakefield was responsible for low � [25].

After the melting transition at Tm � 14:5 eV, the motion
of the particles changed from oscillations around equilib-
rium positions to diffusion, and the structure became more
disordered [see Figs. 2(a)–(c) of Ref. [10] ]. The pair
correlation functions [see Figs. 2(d)–(f) of Ref. [10] ] in-
dicate that the suspension is highly ordered (solid phase) at
0.037 eV, partly melted at 14.5 eV, and in a liquid state at
54.9 eV.

To study the thermal motion of particles, their mean-
square displacements (MSD) were computed from their
trajectories using the entire field of view (with hot spots at
the edges cropped). Figure 2 shows MSD as a function of
time t at various kinetic temperatures. Here, MSD in the
solid phase at T � 5:4 eV is shown for comparison. On
short time scales (!Et & 1) the particles move ballistically
and MSD depends quadratically on time. On long time
scales, the motion is diffusive (except for the solid phase,
where it is limited by the size of the lattice cell) and MSD
grows linearly with time. A small dip in the MSD slope
(subdiffusion) for the temperatures above melting (Fig. 2)
at time t � 0:1–0:2 s might be due to caged motion.

The self-diffusion coefficient can be determined from
the slope of the MSD curve (Fig. 2) at large time (where
MSD / t). We fitted these curves with a function
c1!

�1
E �t!E�

c2 and plotted the coefficients c1 and c2 in
Fig. 3. The value of c2 � 1 indicates that the MSD depends
linearly on time and the particle motion is diffusive, thus c1

can be used to determine the diffusion coefficient in this
case. At a temperature T < 25 eV, c2 < 1 and therefore the
particle motion is ‘‘subdiffusive’’. It is interesting that the
particle motion becomes diffusive at a temperature of and
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FIG. 3. Coefficients (a) c1 and (b) c2 obtained from the least-
squares fits of the MSD (at !Et * 1) to a function c1!

�1
E �t!E�

c2

vs kinetic temperature T. c1 is normalized by 4!Ea
2, and it

equals the normalized diffusion coefficient if c2 ’ 1 (at T *

25 eV). The filled circles (�) are the data at a gas pressure of
p � 1:0 Pa. The filled squares (�) are the data for a denser
particle suspension (a ’ 0:75 mm) at higher gas pressures of
p � 3:4, 2.2, and 1.5 Pa. At low temperature, both c1 and c2

become equal to zero indicating that there is no diffusion in the
solid phase. At 5 eV< T < 25 eV the particle motion is sub-
diffusive (c2 < 1). The melting temperature Tm is marked by a
vertical dashed line (a), (b), and the value of c1=�4!Ea

2�
corresponding to the Lindemann parameter L � 0:2 by a hori-
zontal dashed line (a).
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FIG. 2. Mean-square displacement (MSD) in the solid and
liquid phases at different kinetic temperatures. On the short
time scales (!Et & 1), the MSD is proportional to t2, which
corresponds to ballistic motion of the particles. On the long time
scales (!Et * 1), MSD increases linearly with time in the liquid
phase (T � 54:9 eV, 36.7 eV, and 21.1 eV) indicating diffusion.
MSD of the solid (T � 5:4 eV) is almost constant at !Et * 1,
since it is limited by the crystal cell size.
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above 25 eV, i.e., significantly higher than the melting
temperature 14.5 eV. We attribute this to the coexistence
of two different phases [26] liquid and solid (or hexatic) at
the temperatures close to melting 14:5 eV< T < 25 eV.
This is consistent with the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) melting theory, which predicts
two phase transitions: solid hexatic and hexatic liquid [see
Ref. [27] and references therein].

Figure 4(a) shows the temperature dependence of the
self-diffusion coefficient, determined from c1 and normal-
ized by !Ea

2. This figure includes the data obtained for
different experimental conditions and molecular-dynamics
simulations as indicated in the figure caption. The simula-
tion method is described in Ref. [8].

The temperature dependence of the self-diffusion co-
efficient [Fig. 4(a)] can be used to determine the lat-
tice melting temperature Tm. A two parameter fit to a
function D=!Ea

2 � ��T=Tm � 1� yields the value Tm �
14:3� 7:8 eV. The error bar is large due to two reasons:
first, we have to extrapolate the data to lower temperatures;
second, there are only two data points at high temperature
and they have a large scatter. In order to reduce the error of
the second fit coefficient � we also estimated the melting
temperature independently, using a visual observation of
the particle motion under conditions identical to our pre-
vious experiment [10] and determined that the melting
temperature has a similar value of 14.5 eV. A one parame-
ter fit with Tm � 14:3 yields � � 0:019� 0:007, which is
more precise than the one obtained from a two parameter
fit.

The lattice melting temperature can be also estimated
independently by using the semiempirical (and notably not
very reliable [28,29]) Lindemann criterion, which predicts
melting when the mean-square displacement h�x2i ex-
ceeds some fraction of the interparticle distance a:
01500
h�x2i=a2 >L2, where L is the Lindemann parameter.
The value of L ranges from 6% to 21% for different solids
[30,31] to � 30% (in a modified form) for Coulomb and
Lennard-Jones systems [32]. For Yukawa solids L �
16%–19% is most often used [33–35]. We assume that
each particle in a 2D hexagonal lattice oscillates in a
parabolic potential produced by its surrounding particles
(up to 20a away); i.e., we use the harmonic approximation
[14,36]. Since the particles’ kinetic temperature is equal to
their average potential energy at the mean-square displace-
ment corresponding to the Lindemann parameter, and the
potential energy can be expressed in terms of !E, we
obtain the melting temperature:

Tm � �3=4�!2
Ema

2L2:

Using L � 16%–19% we obtain Tm � 12–17 eV, which
agrees with our observations and fit value.

The measurements of our 2D normalized self-diffusion
coefficient, given approximately by the fit

D=!Ea
2 � �0:019� 0:007��T=Tm � 1�;

agree quite well with the 3D molecular-dynamics simula-
tions of Refs. [14,15,17], where D was predicted to in-
crease linearly with temperature at large T=Tm. Figure 4(b)
presents the self-diffusion coefficient versus T=Tm � 1.
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FIG. 4. Normalized self-diffusion coefficient D=!Ea
2 in a

liquid complex plasma. (a) D=!Ea
2 vs temperature T. (b) The

same data plotted vs T=Tm � 1 to facilitate the comparison with
the simulations of Refs. [14,15,17]. The filled circles (�) are the
data at a gas pressure of p � 1:0 Pa. The filled squares (�) are
the data for a denser particle suspension (a ’ 0:75 mm) at higher
gas pressures of p � 3:4, 2.2, and 1.5 Pa. For comparison, the
self-diffusion coefficients from our 2D MD simulations are
shown as open triangles (4). The solid line represents a least
square fit with a function D=!Ea2 � �0:019� 0:007��T=Tm �
1�, where the melting temperature Tm � 14:3 eV. The measure-
ments agree with the results obtained in 3D MD simulations of
Yukawa systems [14,15,17], which are given by the dashed line.
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The horizontal error bars are due to the uncertainty in the
melting temperature. The coefficient � in our 2D experi-
ments and simulations is larger than that in 3D systems
[14,15,17] by about 66%. However, within the measure-
ment errors [see Fig. 4(b)] the results are compatible.

Our results disagree with those of Refs. [19–22]. We
found no superdiffusion, and the motion was subdiffusive
near the melting temperature. This agrees well with the
simulations of Ref. [14], where no superdiffusion was
found and the subdiffusion near melting is explained by
caged motion. The disagreement with Refs. [19–22] is
most likely due to neutral damping, which was 40–100
times higher in their case. The simulations of Ref. [14]
were performed for the underdamped Yukawa systems
[undergoing ballistic dynamics in the terminology of
Ref. [14] ] and they are not expected to describe the dy-
namic behavior (such as diffusion) of over-damped sys-
tems with Brownian dynamics. The damping rate in the
experiments of Refs. [19–22] (�d � 60–100 s�1) is higher
than the oscillation frequency [!osc �

���
3
p
!E � 60 s�1,

estimated using parameters of Ref. [20], or !osc �
30 s�1 in Ref. [22] ] and thus these systems are critically
damped or over-damped. Our system has �d �
1:37 s�1 


���
3
p
!E � 23:4 s�1 and therefore it is clearly

underdamped. Another reason for disagreement is that our
experiment is performed with a monolayer, while the ex-
periments of Refs. [19–22] were done with vertical chains
of 2–3 [22] to more than 25 particles [19]. Systems of
vertical chains are subject to Schweigert instability [37].

The self-diffusion in 2D underdamped liquid complex
plasmas was studied by measuring the mean-square dis-
placement of particles at various kinetic temperatures. It
01500
was demonstrated that motion was subdiffusive near the
melting point, and it becomes diffusive at higher tempera-
tures. The self-diffusion coefficient was found to increase
linearly with the temperature. These results agree with our
MD simulations as well as with the simulations of
Refs.[14,15,17].
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