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Heating of figure-8 orbit ions by odd-parity rotating magnetic fields (RMFo) applied to an elongated
field-reversed configuration (FRC) is investigated. The largest energy gain occurs at resonances (s �
!R=!) of the RMFo frequency, !R, with the figure-8 orbital frequency, !, and is proportional to s2 for
s-even resonances and to s for s-odd resonances. The threshold for the transition from regular to stochastic
orbits explains both the onset and saturation of heating. The FRC magnetic geometry lowers the threshold
for heating below that in the tokamak by an order of magnitude.
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FIG. 1. (a) Shape of FRC magnetic field in z-r plane, � � 4:1.
(b) Shapes of typical cyclotron, betatron, and figure-8 orbits in
z � 0 plane.
Heating, i.e., stochastic energy gain, of charged particles
by time-varying fields is a complex and fundamental phe-
nomenon critically important to as diverse areas of plasma
physics as fusion research [1] and plasma processing [2].
Well-known are the effects of simple resonances and par-
ticle collisionality on the heating of magnetized plasmas.
Far less well explored is the role of an inhomogeneous
static magnetic-field geometry. Because of its relevance to
space plasmas [3], plasma processing [4], and magnetic-
confinement controlled-fusion research [5], the field-
reversed configuration (FRC) (see Fig. 1)—with its poloi-
dal field nulls, lack of toroidal field, and strong field
gradients—is an important system in which to explore
the effects of magnetic-field geometry on particle dynam-
ics under the influence of time-varying fields.

Even with axial symmetry, a static FRC allows charged-
particle orbits that are regular or ergodic [6,7]. First studies
of single-particle orbits in FRCs assumed time invariance
and spatial symmetries that reduced the problem to one or
two dimensions, allowing Kolmogorov-Arnold-Mosher
(KAM) surfaces to exist [8] and limiting excursions in
phase space. The addition of a rotating magnetic field
(RMF) [9] breaks the angular invariance of the FRC,
creating a three-dimensional system without bounding
KAM surfaces and opening the possibility for large ex-
cursions in phase space and energy. These excursions can
have beneficial results, such as ion heating [10,11], or
detrimental ones, such as loss of confinement. In this
Letter we present studies of ion orbits in FRCs with
RMF applied: the goal is to understand the threshold for
chaos and the role of resonances in the nonlinear growth
and subsequent saturation of ion energy. We restrict atten-
tion to the novel odd-parity RMFs (RMFo) because of field
closure [12] and encouraging recent experimental results
[13]. We show that the same mechanism is responsible for
the initial ion heating and its ultimate saturation.

Studies of stochastic ion heating by perpendicularly
propagating electrostatic waves in tokamaks were per-
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formed with similar Hamiltonian techniques and research
goals [14,15]. The results we report are markedly different
because of fundamental differences in the magnetic-field
geometry of the two devices.

Earlier papers [10,11], which used the RMF numerical
code to investigate RMFos applied to FRCs, showed that
the relevant frequency range for ion heating was broad,
j�j � 0:2–2, where � � !R=!ci, !R is the RMFo fre-
quency, !ci � qBa=mc is the ion-cyclotron frequency in
the axial field at the FRC’s center, Ba, m is the ion mass,
and q is the ion charge. These papers reported significant
ion heating even for low relative RMF amplitude,
BR: BR=Ba � 5� 10�4. Phase decoherence of ion orbits,
with respect to the periodic electric fields created by the
RMFo, is a necessary condition for ion heating. Strong
gradients and regions of field reversal in the FRC provide
locations for possible phase decoherence. For a 10 cm FRC
having an ion density of 1014 cm�3 and an ion energy of
100 eV, Coulomb collisions will be 10 times less frequent
than the stochastic effects described herein [10].

The question arose whether, in spite of the existence of
strong field gradients, ion-cyclotron resonances (ICRs)
were important to ion heating. We show that ICRs are
important, but with significant differences from the stan-
dard ICR picture. More rapid heating occurs at low BR=Ba
for figure-8 orbits [see Fig. 1(b)] than for cyclotron orbits,
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FIG. 2 (color). Results of numerical simulation of ion trajec-
tories in a FRC with RMFo. (a) Figure-8 ion energy vs time for
two values of BR. (b) FFTs of ion energy for the two cases shown
in (a) and also for a betatron orbit. (c) Separation between
resonances, �f, vs normalized initial energy for P � 0:1, 0.2,
and 0.3, at low BR.
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though the latter have a more clearly resonant interaction
with RMFo. Figure-8 orbits cross the field-reversal and
strong-gradient regions (twice) every orbit cycle, possibly
losing phase coherence at each traversal. In contrast, cy-
clotron orbits may only incur phase decoherence at the less
frequent excursions to the axial extremes of their orbits.
Betatron orbits have a less nonlinear nature and hence are
also less well heated than figure-8 orbits. Because figure-8
orbits are representative of a large fraction of ions in hot
fusion FRC plasmas and because they represent the physi-
cally interesting situation of motion in a double potential
well [16], we focus on them. The studies presented herein
also clarify why high-energy orbits tend to interact regu-
larly with RMFo, leading, importantly, to a saturation of
ion heating by RMFo and a method for tuning ion energy.

We follow Ref. [11] by using the same equations for the
RMFo and a Solov’ev equilibrium for the FRC, with the
notation [see Fig. 1(a)]: R � FRC separatrix radius in
midplane; Z � FRC axial half length; � � Z=R, FRC
elongation; r is the radial coordinate; z is the axial coor-
dinate; � is the azimuthal coordinate; pi are canonical
momenta; P � 2p�=qBaR

2, normalized p�; ~A is the vec-
tor potential of RMF and FRC;  � ��!Rt; k � l�=�R
is the axial wave number of the RMFo; l is the axial mode
number; and � is time, in units of 2�=!ci.

The shape of the effective potential-energy surface on
which an ion moves depends on P and z [17]: figure-8
orbits may be confined to the z � 0 subspace, or to a
potential-well minimum above or below z � 0, or may
oscillate across z � 0. Orbits confined to the z � 0 sub-
space are amenable to an analytic analysis and are the
appropriate choice to analyze because of the RMFo’s elec-
tric fields, Er and E�, there. Each cross section in z is either
a double potential well, allowing both cyclotron and figure-
8 orbits, or a raised potential, corresponding to betatron
orbits. Cyclotron orbits feel a force towards larger jzj, thus
eventually enter a region where the barrier between the
double wells is low enough for them to traverse, thereby
becoming figure-8 orbits. Since cyclotron orbits interact
regularly with RMF, except at these axial extremes, their
random fluctuations in energy appear less frequently than
for orbits which are always figure-8 shape. Moreover,
figure-8 orbits have greater radial excursions, hence gain
more energy from the radial electric field of the RMFo. It
follows that the heating of figure-8 orbits is an upper limit
for the heating of all ions in the FRC and that the threshold
for heating is highest in the z � 0 subspace. Extensive
numerical simulations supported this.

We first examined whether the broad � range for heat-
ing is due to resonances at the fundamental ICR frequency.
As described below, the answer is no. Instead high-
harmonic resonances occur because the frequency of the
figure-8 orbit is highly nonlinear. (High-harmonic reso-
nances have recently been observed in an RMF experiment
[18].) As the energy of a figure-8 orbit decreases, the ratio
s � !R=! increases because the ion’s frequency,!, slows
01500
down as it gets closer to the phase-space separatrix created
by the hump in the double potential well. A set of reso-
nances with the RMFo occurs at integral values of s.

Figure 2(a) shows the RMF-code-calculated time depen-
dence of ion energy for two values of BR for a 1 keV ion
initiated in a figure-8 orbit with zero axial velocity in the
z � 0 subspace of a FRC having R � 10 cm, � � 5, � �
0:9, and Ba � 20 kG. Regular motion, with a clear s � 5
component, is seen for BR � 2 G. The energy fluctuations
are small (� 15%) for BR � 2 G and large, >100%, for
BR � 20 G. For BR � 2 G, the fast Fourier transform
(FFT) of ion energy, Fig. 2(b), shows sharp peaks in
frequency space, indicative of regular motion. The separa-
tion between peaks, �f, is 0:207� 0:002, in units of !ci.
For BR � 20 G, the FFT shows broadband noise at a 30
times higher absolute level. Under these conditions, beta-
tron [also shown in Fig. 2(b)] and cyclotron orbits (not
shown) display regular motion—sharp peaks in their
FFTs—with energy fluctuations less than 7%, even for
BR � 20 G. Figure 2(c) shows �f vs ~E, initial energy
normalized to En � q2B2

aR2=2m, for three values of initial
P and low BR. Below P � 0:25 orbits may be cyclotron or
figure 8; above P � 0:25 orbits are betatron. A logarithmic
drop in �f is seen for P � 0:1 and 0.2 at an energy
corresponding to the phase-space separatrix energy, at the
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transition of cyclotron into figure-8 orbits. Little change in
�f occurs for betatron orbits.

In heating, the variance of energy, and therefore the
maximum energy, Emax, will increase with time [19].
Figure 3(a) shows Emax attained by an initially figure-8
orbit as a function of time for four BR values and the same
FRC parameters as in Fig. 2. Emax displays saturation
behavior quickly, implying phase coherence growing
with increasing energy. The threshold for heating is at
BR � 3 G, above which Emax grows / B1:5

R . Figure 3(b)
compares Emax vs BR for figure-8 (P � 0:22), betatron
(P � 0:26), and cyclotron (P � 0:19) orbits initiated in
the z � 0 subspace at the same radial position, r=R �
0:8131, and the same energy, 1000 eV, for a simulation
time of � � 104. Heating of figure-8 orbits occurs at lower
BR than for cyclotron or betatron orbits. At BR � 20 G,
FFTs of energy for figure-8 ions initiated at higher energy,
E> 0:031En � 30 keV, in the z � 0 subspace show sharp
peaks and little further gain in energy. The regular inter-
action of high energy figure-8 orbits with RMFo may be
due to a greater separation of resonances in phase space
[7,20] with increasing energy (or !).

We have calculated the RMFo-induced energy gain of a
figure-8 orbit in a single half period of its motion as a first-
order correction to the one-dimensional motion along r.
For P< 0:25, the shape of the effective potential, V�r�, is a
double well [7,21], corresponding to cyclotron orbits (in
either well) inside the phase-space separatrix and to figure-
8 orbits (moving across both wells) outside the phase-space
separatrix. The figure-8 orbit is approximated by motion in
a symmetric double well:� � r

R � �0 	 a1 cos
!�t�
t0�� 	 a2 cos
3!�t� t0��, with a1=a2 � 10. The ampli-
tudes of oscillation, a1 and a2, are determined by the total
energy. The energy change from the interaction with the
field is given by dH=dt � q~E � ~v � q�Ervr 	 E�v��, with

c~E � �@ ~A=@t. After some algebra and integrating over a
single half oscillation [20,22], we get the energy gain from
the interaction with the Er and E� components of the RMF.
The biggest energy change occurs during a resonance,
FIG. 3. (a) Maximum energy attained vs time for four values
of BR. (b) Maximum energy attained by � � 104 vs BR by three
types of orbits. (c) d ~!� ~E�=d ~E vs ~E for figure-8 orbits; P � 0:15.
(d) Curves: Threshold ~E for saturation of stochastic heating
versus BR=Ba, based on Eqs. (3) and (4); P � 0:17 (upper curve)
and P � 0:2 (lower curve); Data points, dots and stars, from
RMF code.
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!R=! � s, where s is an integer. The Er- and
E�-induced radial and azimuthal portions of the energy
change (�E) in a single half oscillation for an s resonance
are

�Er � H0

 X9;n�s

n�1

Fn�!� cos��0� 	 
F̂0 	 Fs� sin��0�

!
;

(1)

�E� � H0

 X8;n�s

n�0

Qn�!� cos��0� 	Qs�!� sin��0�

!
; (2)

where Fn�!� � Cn
��1�s	n � 1�
n=�s2 � n2��, F̂0 �
��C0=s�
��1�s � 1�, Fs �

�
2 Cs, Qs�!� �

�
2 �!ci=!�Ks,

Qn�!� � Kn
��1�s	n � 1�
s=�s2 � n2���!ci=!�, �0 �
��!Rt0, t0 is the initial time, H0 �
mkR3!ci!RBR=2Ba, and the Cn depend on �0, a1,
and a2. Since the total energy is H � 1

2m�R!a1�
2 and

j�j � 1, the relative fluctuations in energy during an os-
cillation are of order max�Eodd=H �O�102sBR=Ba� and
max�Eeven=H �O�10s2BR=Ba�. These predict significant
energy gain for figure-8 orbits over a single oscillation,
even for a relatively low amplitude RMF, BR=Ba � 10�3.
The energy gain for s-even resonances has an s2 depen-
dence while s-odd energy gain has a linear dependence on
s. Resonances with an odd value of s show better heating
than s-even resonances, especially at lower values of s,
where the ion energy is higher. Thus, the heating observed
for figure-8 orbits at higher energies results primarily from
an overlap of odd-s resonances.

Using the condition for exponential separation of trajec-
tories [22], we now determine the threshold for the ergo-
dicity of ion trajectories, essential to convert energy gain to
stochastic heating. The change in energy over an oscilla-
tion is used to map the dynamics: Ej	1 � Ej 	�E�tj�;
tj	1 � tj 	 
�=!�Ej	1��where tj is the time of the start of
successive ion oscillations at � � �max � �0 	 a1 and
�E�tj� is �Er�tj� 	 �E��tj�, with the substitutions �!
�j, �j � ��!Rtj, and �E! �E�tj�. The dynamics
will be chaotic if exponential separation of trajectories,
i.e., K > 1, occurs, where K � maxj�dtj	1=dtj� � 1j. In
dimensionless variables, ~E � �m=b2R2�E and ~! �
m!=b � 2!=!ci, where b � qBa=2c. K for odd and
even resonances are

Kodd 
 8�s
�

1

kR

��
BR
Ba

�
d ~!� ~E�

d ~E
; (3)

Keven 

�
2
s2

�
kR
��
BR
Ba

�
d ~!� ~E�

d ~E
: (4)

Based on these, increasing the axial wave number, k, of the
RMFo should lower the chaos threshold for s—odd reso-
nances while raising the threshold for s—even resonances.
This is borne out by numerical simulation.

Figure 3(c) shows d ~!� ~E�=d ~E vs ~E for figure-8 orbits
having P � 0:15. At energies very close to the separatrix,
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d ~!� ~E�=d ~E grows as � ~E� ~Eh�
�5=6, where ~Eh is the energy

at the phase-space separatrix. The large growth of
d ~!� ~E�=d ~E near the separatrix corresponds to a large in-
crease in nonlinearity of the figure-8 orbital frequency.

The greatest rate of stochastic heating is expected to
occur for lower-energy figure-8 orbits where the values of s
and d ~!� ~E�=d ~E are higher. As BR is increased, the stochas-
tic region above the phase-space separatix will broaden.
Close to the separatrix, even very low amplitudes of BR
should produce chaotic orbits. Equations (3) and (4), com-
bined with Fig. 3(c), can be used to estimate the relative
amplitude of BR needed to produce stochasticity and heat-
ing. For example, s � 3 resonance occurs at ~E 
 :0185,
corresponding to d ~!� ~E�=d ~E 
 25; see Fig. 3(c). Using
Eq. (3) and kR� 1, chaotic trajectories are to be expected
for all s-odd resonances with s � 3 and BR=Ba � 5:10�4,
for �� 1, the assumption used in the derivation. These
findings approximately agree with the numerical findings.
Changing the value of a P changes the scale of ~E, but does
not have a substantial effect on the value of d ~!� ~E�=d ~E at
different resonances. Thus P determines the energy range
over which figure-8 orbits get heated, with greater energy
range for lower values of P, while not affecting the ap-
proximate structure of phase space. In Fig. 3(c), all s > 4
resonances are located to the left of ~E 
 0:013, hence
occur over the interval � ~E� 0:003. This leads to much
greater chaos closer to the phase-space separatrix where
the closely spaced resonances overlap. Thus, lower-energy
figure-8 orbits are more chaotic and much better heated by
the RMFo than the higher energy ones. Figure 3(d) shows
this effect for two values of P: 0:17 and 0.2. Figure-8 orbits
are not further heated once their energy reaches (or initially
exceeds) the curved line appropriate for each P value. The
simplifications on which Eqs. (3) and (4) are based become
less accurate at BR=Ba > 0:001.

Among the clearest differences between these results for
the FRC and those reported for the tokamak [15] are:
(1) The nonlinearities for the FRC arise from the double
potential well and field gradient and their direct effects on
the particle orbit. Those in the tokamak arise from trapping
in the wave field—hence require a stronger wave field—
and resonance between the cyclotron motion and the wave
field, resulting in a single large resonance and large first-
order islands. In contrast, close spacing in phase space
between resonances of a figure-8 orbit leads to an overlap
between resonances and the observed stochastic heating
for figure-8 orbits in FRCs. The importance of the time-
varying field, E, in the tokamak analysis is to create a small
nonlinearity in this 2-D system (of the order of E=B) which
leads to resonances between the two degrees-of-freedom,
not between the E field and the ion trajectory. (2) In the
tokamak, heating occurs at 10 times higher values of �
(over 20 vs 1 in the FRC) and lower values of!R=kvi;thermal

(� 1 vs 10). (3) The threshold for heating in the FRC is
lower by the factor sd ~!� ~E�=d ~E, through which the effect
of the FRC’s double effective-potential well is clear.
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In summary, the energy gain in an orbital period due to
RMFo was calculated for a figure-8 orbit in a FRC.
Resonances of !R with ! produce significant energy
gain. Odd-s resonances more effectively heat for high-
energy (lower s) figure-8 orbits. The energy gain in a
oscillation was used to map the dynamics and a criterion
for the exponential separation of trajectories was used to
find the threshold for chaotic orbits. K, the measure of the
rate of trajectory separation, increases with BR. At higher
energies, the orbits are less chaotic due to both a lower
value of s and, more importantly, to a decreased nonline-
arity reducing d ~!� ~E�=d ~E.
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