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Electron, Positron, and Photon Wakefield Acceleration: Trapping, Wake Overtaking,
and Ponderomotive Acceleration
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The electron, positron, and photon acceleration in the first cycle of a laser-driven wakefield is
investigated. Separatrices between different types of the particle motion (trapped, reflected by the
wakefield and ponderomotive potential, and transient) are demonstrated. The ponderomotive acceleration
of electrons can be largely compensated by the wakefield action, in contrast to positrons and positively
charged mesons. The electron bunch energy spectrum is analyzed. The maximum upshift of an
electromagnetic wave frequency during reflection from the wakefield is obtained.
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Laser-driven charged particle acceleration is an attrac-
tive alternative to cyclic accelerators and linacs, promising
to provide a much greater acceleration rate with a much
more compact facility. At the dawn of laser technology, the
electron acceleration with ‘‘optical maser’’ was suggested
in Ref. [1]. In the laser wakefield accelerator (LWFA)
concept introduced in Ref. [2], a long-living strong
Langmuir wave (wakefield), induced by a short intense
laser pulse in its wake in a low-density collisionless
plasma, accelerates duly injected electrons. For effi-
cient acceleration of charged particles, the laser pulse
must be relativistically strong; i.e., its amplitude a0 �
eE0=me!c * 1. To provide electrons, one must use an
externally preaccelerated electron bunch or exploit the
effect of self-injection due to a longitudinal Langmuir
wave break [3] or/and a transverse wave break [4].

Recent experiments [5,6] demonstrated localized energy
spectra of electrons accelerated up to 170 MeV. The in-
dications were given that the laser pulse underwent a self-
focusing, and the wave breaking (both longitudinal and
transverse) occurred in the first cycle of the wakefield and
resulted in the electron self-injection.

Not only charged particles can get energy from the
wakefield, but also photons. The wakefield is associated
with an inhomogeneous electric charge density, moving
with the wakefield phase velocity. An electromagnetic
(EM) wave packet propagating in this medium undergoes
a frequency shift due to the Doppler effect. In Ref. [7], a
frequency upshift of the EM pulse copropagating with the
wakefield was called ‘‘photon acceleration.’’ In the case of
a counterpropagating EM pulse, the wakefield, close to
wave breaking, can reflect a considerable amount of the
pulse energy resulting in very high EM field intensification
due to frequency upshift and focusing [8].

In a majority of publications on the LWFA, the periodi-
cal structure of the wakefield is implied. However, the
laser-driven wakefield is not periodical, and a thorough
analysis of its first cycle dynamics is of great importance.
The first cycle can trap and accelerate an external electron
bunch [9]. In Ref. [5], the localized electron energy spec-
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trum was attributed to electrons that overtake the laser
pulse due to acceleration in the wakefield first cycle. At
the laser pulse front, conditions can be met for the so-called
‘‘ponderomotive’’ electron acceleration [10]. In this Letter,
we present a general approach to the problem of accelera-
tion of charged particles, electrons, and positrons, and
photons in the first cycle of the wakefield.

In the framework of classical electrodynamics, the
one-dimensional motion of a particle with charge �e
and mass me in the laser pulse and wakefield is de-
scribed by the Hamiltonian H �fm2

ec
4�c2P2

k
��cP?�

eA?�x;t��2g1=2�e’�x;t�, where x is the particle coordi-
nate, Pk and P? are components of the generalized mo-
mentum, A? is the laser pulse vector potential, and ’ is the
wakefield potential. If we neglect the laser pulse disper-
sion, then A? and ’ depend on X � x� vgt, where vg is
the laser pulse group velocity (equal to the wakefield phase
velocity), 0< vg < c. Thus, the Hamiltonian admits a Lie
group with generators vg@x � @t, @y, @z, and the Noether
theorem implies three motion integrals: H � vgPk �
mec2h0, P? � P?0, where h0 and P?0 are constants of
the particle initial state. To ensure the dependence of the
Hamiltonian on X � x� vgt, we assume that the laser
pulse is circularly polarized and P?0 � 0. We introduce
dimensionless variables �ph � vg=c, ��X� � e’�X�=
mec

2, px � Pk=mec, and a�X� � eA?�X�=mec
2. In terms

of new variables, the first integral gives the equation

h�X; px� �
def

���������������������������������
1� p2

x � a2�X�
q

���X� � �phpx � h0:

(1)

According to its solution for �ph < 1, the particle moving
from X0 to X acquires the net kinetic energy

E � �2
ph��� �phf�

2 � ��2
ph �1� a

2�X��g1=2�� 1; (2)

where �ph � �1� �2
ph�
�1=2, � � ��X� � h0, and px0 �

px�X0�; the sign ‘‘�’’ is for X increasing with time and
‘‘�’’ is for X decreasing with time.
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To exemplify the general property of the system with
Hamiltonian h�X;px�, we show its phase portrait in
Figs. 1(c) and 1(d) for the electron with P?0 � 0 in the
case when the circularly polarized quasi-Gaussian laser
pulse with amplitude a�X� � a0fexp��4 ln�2�X2=l2p� �
1=16g��lp � jXj�, where � is the Heaviside step function
[���� � 1 for � 	 0 and � 0 for � < 0], a0 � 2, FWHM
size lp � 10 wavelengths, propagating in an ideal hydro-
gen plasma with density ne � 0:01ncr, excites a wakefield,
whose potential ��X� is described by the Poisson equation

�00 �k2
p�

3
ph�phf�1�����2

ph�1���2�1�a2�X���1=2

��������2
ph�����2��2�a2�X���1=2g; (3)

where the prime denotes differentiation with respect to the
X coordinate, kp � !pe=c, and � � mi=me � 1836 is the
ion-to-electron mass ratio. The potential, longitudinal elec-
tric field, laser pulse envelope, and the electron and ion
densities are shown in Figs. 1(a) and 1(b), where X is
normalized on the laser wavelength �L. We choose the
finite quasi-Gaussian pulse shape to emphasize the exis-
tence of the ponderomotive separatrix (see below).

Each orbit fX�t�; px�t�g of the electron in the �X; px�
plane is a segment of a level curve of the function
h�X; px�. The �X; px� plane is divided into basins of a finite
motion, where the particle is trapped by the wakefield
FIG. 1. (a) The wakefield excited by the laser pulse;
(b) normalized electron and scaled ion density. Phase portrait
for the (c) electron, (e) positron, and (f) photon. (d) The electron
ponderomotive basin close-up. The thick solid line is for sepa-
ratrices, the thin solid line for other orbits; the thick dotted line in
(c) and (e) is for px � �ph�ph�1� a2�X��1=2 and in (f) is for
kkc � �ph�ph!pe�X�.
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potential, and two basins of infinite motion. The basins
are separated from each other by special orbits, sepa-
ratrices, which join at singular points situated on the
curve pxs�X� � �ph�ph�1� a

2�X��1=2. On this curve, the
square root in the right-hand side of Eq. (2) vanishes:
���X� � h0�

2 � ��2
ph �1� a

2�X�� � 0.
An electron started from the singular point Xs acquires

the maximum kinetic energy at the top Xt of the separatrix.
If the laser pulse length is shorter than half of wakefield
wavelength, lp < �wf=2, then in the first cycle of the wake-
field the points Xs and Xt correspond, respectively, to the
local minimum and maximum of the wakefield potential,
��Xs� � �min, ��Xt� � �max. So the maximum kinetic
energy on the separatrix is

E m��2
phf��m��ph���2

m�2��1
ph ��m�

1=2g�E0; (4)

where ��m � �max ��min, E0 � �ph � 1. If �ph 
 1,
we have Em � 2�2

ph��m � �ph � 1. The lowest value of
the potential � is reached when the laser pulse sweeps the
greatest possible amount of electrons, �min	�1�1=�ph,
and the highest value is limited by the ion response,
�max � ��1� 1=�ph�. Knowing the minimum of the so-
lution to Eq. (3), one can find its maximum; in the case
of a sufficiently short and intense laser pulse (lp  �wf ,
a
 1), Eq. (3) gives �max � �1� ��1

ph ��2�ph����
1�=�2�ph ��� 1�. If the laser pulse has the optimal
length, then �max � a2=2 for a &

����
�
p

[11].
Since the laser pulse has a finite duration, the ‘‘run-

away’’ separatrix exists, a segment of the level curve
h�X;px� � 1=�ph ��min [Fig. 1(c)]. If an electron beam
is injected exactly onto this separatrix, it asymptotically
overtakes the laser pulse and becomes monoenergetic with
the final energy, as it follows from Eq. (4),

E f��2
phfj�minj��ph��

2
min�2��1

ph j�minj�
1=2g�E0; (5)

where j�minj � ��min > 0. In the limit �ph 
 1, this
energy can be much higher than the required minimum
injection energy. If, additionally, the wakefield is strongly
nonlinear (a
 1), �min tends to its lowest value �1�
1=�ph, and we have Ef;max � 2�2

ph � 2.
In the first cycle of the wakefield, behind the laser pulse

there is also the ‘‘confining’’ separatrix, a segment of the
level curve h�X; px� � 1=�ph (the exact value is discussed
below). It encloses a basin of orbits of electrons which are
trapped inside the potential well moving along with the
laser pulse. Between the confining and runaway separa-
trices lie a bunch of reflecting orbits. On such an orbit,
an electron starts with the longitudinal momentum p�x
in the range �ph�ph > p�x > �ph�ph � �

2
ph��phj�minj �

��2
min � 2��1

ph j�minj�
1=2� 	 0 at t! �1. Then it is accel-

erated by the first cycle of the wakefield, reaching the
maximum energy defined by Eq. (2), where one must
substitute X0 � �1, px0 � p�x , a�X0� � ��X0� � 0.
Finally, the electron overtakes the laser pulse. Its longitu-
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FIG. 2. The energy spectrum of the electron bunch: contribu-
tions from (a) particles scattered about the top of the separatrix
and (b) particles that overtake the laser pulse.
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dinal momentum px and kinetic energy E increase as

p�x � p�x � 2�2
ph����ph � v

�
x �; (6)

E � � E� � 2�ph�2
ph����ph � v�x �< Ef ; (7)

�� � �1� �p�x �
2�1=2, E�����1, v�x � p�x =�� <�ph.

The same equations describe an elastic rebound of a rela-
tivistic particle from the wall moving at a speed �ph.

Yet another, the third, ponderomotive separatrix exists in
the vicinity of the laser pulse front Xf � lp [Figs. 1(c) and
1(d)]. It joins the second, confining, separatrix at the point
�Xp; pxs�Xp�� defined by the equation a�Xp�a0�Xp� �

�ph�0�Xp��1� a2�Xp��
1=2, and so the exact value of the

Hamiltonian for both separatrices is hp � h�Xp; pxs�Xp��.
The third separatrix encloses a thin basin of orbits with
1=�ph < h�X; px�< hp � h�Xp; pxs�Xp��, going from X �
�1 at t! �1 with px < �ph�ph and reflecting back
with increased px > �ph�ph at t! �1. In contrast to
orbits between the confining and runaway separatrices,
where particles are reflected by the wakefield potential,
the orbits enclosed by the third separatrix belong to elec-
trons which are reflected by the ponderomotive force of
the laser pulse. Such reflection is possible because the laser
pulse has the speed vg < 1 and the wakefield potential
��X� always grows slower than the a�X� on the laser pulse
front. Using series expansions of a�X� and ��X� about the
point X � Xf, we can estimate the ponderomotive basin
thickness, which is the energy difference between the
upper and lower branches of the ponderomotive separatrix:
at ja0�Xf�j  1, and �
 1, �ph 
 1, E�p � E�p �

2�ph�2
ph�h

2
p � ��2

ph �
1=2 � �2

���
3
p
�phk�1

p a0�Xf��
1=2
ph , where

E�p � E�p � �ph � 1. The ponderomotive force is able to
reflect only those electrons that move in the same direction
as the laser pulse and whose velocity is slightly less than
�ph. The energy gain is rather small because the pondero-
motive and electrostatic potentials almost completely com-
pensate each other. However, it is still not zero even with
the ideal Gaussian pulse; the maximum effect is reached
when the laser pulse has a sharp front: E�p � E�p �
2�ph�pha0. For a particle, initially at rest, the energy
gain cannot be greater than 2�2

ph�
2
ph or a2

0=2.
We examine the energy spectrum change of an electron

bunch injected into the first cycle of the wakefield wave
onto the runaway separatrix [Fig. 1(c)]. When a relatively
long, initially quasi-monoenergetic, bunch is injected
from the singular point Xs and accelerated in the first cycle
of the wakefield wave, its particles are distributed along the
runaway separatrix with some density N �X�. As a result,
the particle energy spectrum broadens from the initial
energy E0 to the cutoff (maximum) energy Em. Besides
these two limits, the spectrum has a peculiarity at Ef

(Fig. 2). Near the top of the separatrix, the particle energy
has a parabolic dependence on X, E�X� ’ Em�1� �X�
Xt�

2=l2acc�, where lacc � �2
ph�wf is the acceleration length
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[2]. Hence, the energy spectrum of particles collected over
the wakefield period contains the following contribution
from particles with energy near the cutoff energy:

dN
dE

��������E!Em�0
�

N �X�
jdE=dXj

’
N �Xt�lacc

2
�������������������������
Em�Em � E�

p ; (8)

where E < Em. If electrons are injected also onto separa-
trices in the other cycles of the wakefield, the resulting
energy spectrum contains a superposition of peaks (8). If
the particles are arranged uniformly on the separatrix, the
spectrum, despite its (integrable) singularity, has a rather
large spread; e.g., half of the particles occupy the energy
interval 3Em=4 � E < Em. A contribution to the spectrum
from particles overtaking the laser pulse can be obtained
from the dependence Eq. (2). Taking, for simplicity, the
model dependence E � Ef�1� � exp��X=Xf��, � �
const> 0, we obtain

�dN=dE�E!Ef�0 ’N �Xf�Xf=�E � Ef�: (9)

In addition to the case of a negatively charged particle
(electron), we consider the case of a positively charged
particle (positron) [Fig. 1(e)]. The formulas (1) and (2)
remain valid with the substitution �! ��. In the wake-
field, the electron’s points of equilibrium correspond to the
positron’s singular points (for a sufficiently short laser
pulse). The positron injected from the singular point into
the second cycle of the wakefield returns back to the same
singular point. In the first half-cycle of the wakefield, in
contrast to the case of the electron, both forces acting on
the positron—the wakefield electrostatic force and the
laser pulse ponderomotive force—pull the positron in the
same direction (forward). Therefore, we see a wide pon-
deromotive basin, where particles with initial momentum
�ph�ph > p�x;pos >�2

ph��ph�pos � ��
2
pos � �

�2
ph �

1=2� are ac-
celerated up to the energy

E �p;pos � �2
phf�pos � �ph��

2
pos � �

�2
ph �

1=2g; (10)

in accordance with Eqs. (2) and (7). Here �pos � �p;pos �

��1
ph �1� a

2
p;pos�

1=2, and the values �p;pos and ap;pos are
taken at the singular point Xp;pos, a nontrivial solution to
the equation a�X�a0�X� � �ph�0�X��1� a2�X��1=2 � 0. In
the limit �ph 
 1, Eq. (10) becomes E�p;pos � 2�2

ph�p;pos �

2�ph�1� a2
p;pos�

1=2. As the wakefield potential ��X� al-
ways grows slower than the laser amplitude a�X�, the
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contribution of the ponderomotive mechanism to the posi-
tron energy can be significant. The momentum of the lower
branch of the ponderomotive separatrix is negative at
�pos > 1; thus, the positron initially at rest is accelerated
up to momentum 2�ph�

2
ph and energy 2�2

ph�
2
ph, in accor-

dance with Eqs. (6) and (7). We see that even the ‘‘back-
ground’’ positrons, introduced externally or created in the
laser-plasma interaction, are substantially accelerated, if
�p;pos * 1. To ensure this effect in the case of more heavy
particles, e.g., pions, the laser amplitude must be suffi-
ciently large, a0 >

����������������
m�=me

p
. In the limit of a long laser

pulse (lp 
 �wf), also considered in Ref. [12], the maxi-
mum energy (10) becomes � �1� �ph��2

pha0, since
�p;pos � a0 in this limit.

A sufficiently short EM pulse propagating in the
wakefield-modulated plasma can be described in the geo-
metric optics approximation as a particle (‘‘photon’’) with
coordinate x (center of the pulse) and momentum k (wave
vector) by the Hamiltonian represented by the dispersion
relation !�x;k; t� � �k2c2 �!2

pe�x� vpht��1=2, k2 �

k2
k
� k2

?. As in the case of the electron, the dependence
on time and space only via X � x� vpht allows us to
describe the photon by the Hamiltonian

��X; kk� �
�������������������������������
k2
k
c2 �!2

pe�X�
q

� �phkkc (11)

and constant transverse momentum k? � k?0 (we assume
k?0 � 0 for simplicity). The phase portrait of the photon is
similar to that of the electron [see Fig. 1(f), where kkc is
normalized on the laser frequency !L]. We see the run-
away and confining separatrices, as well as a ponderomo-
tivelike basin, which corresponds to the photon reflection
at the first maximum of the electron density piled up at the
laser pulse front. (We notice that, when the wakefield is
excited by an electron bunch, the phase portrait of the
photon can be topologically equivalent to that of the posi-
tron.) On an orbit corresponding to the Hamiltonian value
��X; kx� � �0 � !0 � �phkk0c, the photon frequency is

! � �2
ph�0f1� �ph�1�!2

pe�X���2
0 ��2

ph �
1=2g: (12)

A photon �kk0; !0� that reflects from the first or second
density peak (i.e., a photon in the ponderomotive basin or
between the confining and runaway separatrices) under-
goes frequency upshift ~! � �2�2

ph � 1�!0 � 2�ph�
2
phkk0c.

Maximum frequency ~!max of the photon reflected from the
wakefield is the frequency on the runaway separatrix at
X ! �1. The runaway separatrix corresponds to �0 �

!̂pe=�ph, where !̂pe � !pe�Xs� is the maximum plasma
frequency (at the maximum plasma density); thus, from
Eq. (12) we obtain

~! max � �ph!̂pef1� �ph�1�!2
pe0=!̂

2
pe�

1=2g; (13)

!pe0 � !pe��1� is the unperturbed plasma frequency.
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For !̂pe 
 !pe0 and �ph ! 1, ~!max � 2�ph!̂pe. A suffi-
ciently strong wakefield can reflect a counterpropagating
photon, kk0 < 0. In the limit !0 
 !pe0, such a photon
acquires frequency ~! � !0�1� �ph�=�1� �ph�, the Ein-
stein formula for the frequency of the EM wave reflected at
a relativistic mirror in vacuum. The Einstein formula and
Eq. (13) together impose the upper limit on the reflected
photon frequency. The geometric optics approximation
fails when the wakefield is close to wave breaking; never-
theless, the reflectance can be considerable [8].

In conclusion, in the first cycle of the Langmuir wave in
the wake of a short relativistically strong laser pulse, at
least three separatrices exist: On the runaway separatrix,
the electron overtakes the wakefield and the laser pulse; on
the confining separatrix, it moves together with the laser
pulse; and the ponderomotive separatrix encloses a domain
of the ponderomotive acceleration. The ponderomotive
acceleration can significantly contribute to the energy
gain of positrons and positively charged mesons, in con-
trast to electrons, for which it can be largely compensated
by the wakefield action. The energy spectrum of the ini-
tially monoenergetic electron bunch accelerated in the
wakefield first cycle has a typical shape with two peaks;
the shape of the peak can indicate an acceleration mecha-
nism. The upper limit on the frequency upshift of the EM
wave reflected from the wakefield is obtained in the geo-
metric optics approximation. Although the presented de-
scription is one-dimensional, revealed properties are
present in three-dimensional configurations in the vicinity
of the axis, where particles are most efficiently accelerated.
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