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Modulational Instability in Crossing Sea States: A Possible Mechanism
for the Formation of Freak Waves
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Here we consider a simple weakly nonlinear model that describes the interaction of two-wave systems
in deep water with two different directions of propagation. Under the hypothesis that both sea systems are
narrow banded, we derive from the Zakharov equation two coupled nonlinear Schrodinger equations.
Given a single unstable plane wave, here we show that the introduction of a second plane wave,
propagating in a different direction, can result in an increase of the instability growth rates and
enlargement of the instability region. We discuss these results in the context of the formation of rogue

waves.
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Recently wave systems characterized by two different
spectral peaks, also known as crossing sea states, have
become of particular interest in the community of ocean
waves. A study carried out by Toffoli ef al. [1], based on
data collected from 1995 to 1999 by Lloyd’s Marine
Information Service, has revealed that a large percentage
of ship accidents due to bad weather conditions have
occurred in crossing sea states. Lehner et al. [2], analyzing
synthetic aperture radar (SAR) images, have pointed out
that the famous Draupner time series, in which a wave of
26 meters height was measured, has also been recorded in
conditions of crossing sea states. This condition is quite
common in the ocean and occurs when a wind sea and a
swell coexist (a wind sea is a wave system that is being
forced by the local wind field; a swell is a system of waves,
generated elsewhere, that have moved out of the generating
area or are no longer affected by the local wind).

A complete understanding of such ‘“‘two-phase” wave
trains is far from being clear and the possible formation of
extreme events resulting from a crossing sea state has not
yet been investigated. Apart from a trivial linear superpo-
sition of two-wave systems (see [2] or [3]), which can
eventually generate a large amplitude wave (simple inter-
ference mechanism), the role of weakly nonlinear interac-
tions in the formation of extreme waves in crossing sea
states has not received attention. Some results in shallow
water using the Kadomtsev-Petviashvili equation have
been described in [4], where the interaction between two
solitons propagating in different directions has been con-
sidered as a possible model for extreme waves. Here we
consider the case of infinite water depth and study the
modulational instabilities that can arise in the dynamics
of two-wave trains that propagate in different directions.
This is a natural extension of previous works ([5-8])
where the modulational instability (Benjamin-Feir insta-
bility) was considered as a possible mechanism for the
formation of extreme waves (recent work has shown that
this mechanism is particularly relevant for long crested
waves [9-11]). In these papers the basic equation that
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has been considered as a starting point for theoretical
considerations is the nonlinear Schrodinger (NLS). This
equation can be derived from the inviscid, irrotational
primitive equation of motions in a weakly nonlinear re-
gime, under the hypothesis that wave energy is basically
concentrated in a single wave number (the carrier wave). A
well-known result is that the plane wave solution of NLS
can be unstable to side-band, small amplitude perturba-
tions [12]. According to the NLS equation, the evolution of
an unstable wave group generates a single wave that can
reach up to 3 times the amplitude of the initial carrier wave.
Because of the hypothesis under which the NLS equation is
derived (narrow banded approximation), it is obvious that
it cannot describe the evolution of two-wave systems char-
acterized by well-separated wave numbers. In order to
properly approach the problem of crossing sea states, in
this Letter we derive two coupled nonlinear Schrédinger
equations (CNLS), each describing the evolution of a
single spectral peak; we then study the stability properties
of the systems.

Before entering into the discussion, it should be men-
tioned here that the CNLS equations have been discussed
in different fields of physics. For example, focusing CNLS
equations have been derived in [13,14] and in general they
can be derived for nonlinear media for two waves with
different polarizations. For particular values of the coeffi-
cients in the CNLS equations, it has also been shown that
the system is integrable [15] (see also [16]). Concerning
water waves, the CNLS equations have been discussed in
many different papers [17-26]. It should also be men-
tioned that most of these papers either discuss the one-
dimensional problem of standing and copropagating waves
or, in the two-dimensional case, do not report the coeffi-
cients of the terms in the CNLS equations which are
fundamental for a detailed stability analysis (in [26] coef-
ficients for the CNLS equations are reported but no stabil-
ity analysis has been performed). To the knowledge of the
authors no approach to the study of extreme waves has
been attempted before using the CNLS equations.
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Here our starting point is the Zakharov equation in two
spatial dimensions (2D + 1):

W + l(()]Cl] = —i[T1‘2,3,4a;a3a45igdk2dk3dk4,
(1)

where 873 = 8(k; + k, — k3 — ky), @ = \/g[k][. The in-
tegral is six dimensional on —oo to +oo. Ty,34 =
T(k, k,, k3, k) is the coupling coefficient whose analyti-
cal form can be found in [27]. The complex amplitude a; =
a(k,, 1) is related to the surface elevation 7(x, t) to the
leading order as follows [dependence on time of a(k;, 1)
will be omitted for brevity]:

n(x, 1) —[ 5 lEL [a(k) + a*(—k)]e**dk. (2)

We consider the case of energy concentrated mainly
around two-wave numbers: k =k@ and k =k®.
Consequently we write the complex amplitude a(k) as:

a(k) = Ak — k@)e= " + Bk — ke~ (3)
with 0@ = ,/g|lk@| and w® = ,/g|lk®|. Using (3),

under the hypothesis that k'@ # k®, it is possible to write
Eq. (1) as two coupled equations. We concentrate our
analysis on the particular case of k@ = (k, [) and k) =
(k, —1I) and consider both energy distributions as quasimo-
nochromatic. In this case, in each equation, w(|K|), can be
Taylor expanded around the two dominant wave numbers.
In order to balance nonlinearity and dispersion, in the
linear part of the equation the expansion is performed up
to second order while in the nonlinear part, only the leading
order term is considered. The methodology is standard and
has been used in the past to derive the single NLS equation
(and higher order corrections) starting from the Zakharov
equation (see for example [25]). Scaling the variables A

and B with 1/2|k|/w(]Kk|) so that they have the dimension
of a surface elevation, we get the following CNLS:
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The coefficients for the linear terms are

(k) w(k)
Cx= 2K2 k’ Cy 2k h 2 l’
‘g(") QR -1), B= "’(") ) R O]
3w(k)
L ik,
and for the nonlinear terms are:
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where k = vk? + I°. Similar equations have been recently
derived in [26] starting from the Euler equations and using
the method of the multiple scales (our coefficient { is
slightly different from the one reported in [26]). We now
consider the stability analysis of Egs. (4) and (5) for
perturbations along the k, axes. For these perturbations
the stability analysis can be performed directly on the
following equations:

9%A
A _ @SS+ iEAP +22IBPA =0 )
X

ot
9’B
% — 0+ IEBE + 221APBE = 0. ©)

This system is quite general and, with different coeffi-
cients, can be obtained in the case of two arbitrary quasi-
monochromatic wave systems by making the hypothesis
that variations take place only in the direction perpendicu-
lar to the one determined by k@ — k® (see [19]). Note
that to obtain (8) and (9) we have performed a Galilean
transformation of the form of x' = x — C,t. The possibility
of removing the term containing the group velocity in both
equations makes the system (8) and (9) as “nice” as the
NLS equation in the sense that, if written in nondimen-
sional form, it is possible to find a time scale (and a space
scale) for which the small parameter used in the asymptotic
expansion to derive these equations can be formally re-
moved. In general this property is not shared by (4) and (5)
because each wave system travels with its own group
velocity. It is also interesting to mention that the coefficient
a changes sign (from negative to positive) when 6 =
arctan(l/k) > 35.264°; the system of equations moves
from focusing to defocusing CNLS; therefore, we expect
that this transition may affect the stability properties of the
solutions.

We now consider the following plane wave solution of

CNLS:
A=Ayl + a)e wrtda) B = By(1 + b)e iwr+¢s),

(10)
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FIG. 1. Instability diagram for B, = 0 as a function of angle 6

and perturbation wave number. See text for details.
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FIG. 2. Instability diagram for B, = A, as a function of angle

6 and perturbation wave number. See text for details.

where a, b, ¢, ¢;, are small perturbations in amplitude and phase of the plane wave solutions. We substitute (10) in (8) and
(9), then linearize the resulting equations and use the normal mode approach, with K and () respectively the wave number
and the angular frequency of the perturbation, to obtain the following dispersion relation:

Q= :\/aK2[(g(Ag + BY) + aK?) = ,[£(4} — BY)? + 162°A3B}]

The first terms under the square root correspond, in the
case of B, to the standard Benjamin-Feir instability, while
the last term under the second square root is the result of
the presence of the second carrier wave in the system. In
Figs. 1 and 2 we show the imaginary part of )/ for two
different cases as a function of the wave number of the
perturbation K’ and the angle § = arctan(//k). The growth
rate Im [(}'] and wave number K’ reported in the figures are
nondimensional () = Q/,/gk and K’ = K/«). Growth
rates are presented in gray scale: white regions correspond
to zero growth rates (stability) and the darker regions to
instability. In Fig. 1 the growth rate for €, = Agx = 0.1
and B, = 0 is considered. Note that we are looking at the
evolution of the perturbation along the k, axes and not
along the direction of propagation of the wave; when B, =
0, our resulting instability curve corresponds to slices
along the k, axes of the instability diagram of the 2D +
1 NLS equation for different angles of propagation (note
that the carrier wave does not lie on the k, axes). As
expected, Fig. 1 shows that for § > 35.264° any perturba-
tion is stable. The unstable region that extends to high
wave numbers around 6 = 35° corresponds to the un-
bounded region of instability of the 2D + 1 NLS equation,
which is well known to be unphysical. Figure 2 corre-
sponds to the case of two carrier waves with the same
steepness Agk = Byk = 0.1. With respect to Fig. 1 the
growth rate has increased as can be seen from darker
regions in the instability plot. Moreover, Fig. 2 shows an
unstable region also for large angles (68.02° < 6 = 90°):
two waves traveling in almost opposite directions are
unstable to perturbations perpendicular to their directions
of propagation (see, for example, [28]).

In order to appreciate more the differences in the growth
rates of the two cases, we show in Fig. 3 a slice of Figs. 1
and of Fig. 2 for # = 15.3°. The larger growth rates for the
crossing sea state is evident from the figure. In Fig. 4 we

(1)

‘show different slices of Fig. 2 corresponding to different
angles. As can be seen from the figure the growth rate
increases as the angle becomes smaller; this is consistent
with results in [28,29]. The maximum growth rate is
achieved when two waves propagate almost in the same
direction; in this case the two-wave system, each of steep-
ness €, tends to a single system of steepness 2e.

In order to check the consistency of the growth rates
obtained, we have performed direct numerical simulations
of the CNLS equations in (8) and (9). We have used a
standard pseudospectral numerical method in which the
linear part is solved exactly in Fourier space and the non-
linear terms are solved in physical space. In Fig. 5 we show
the evolution in time of the mode K’ = 0.226 for 6 =
15.3° respectively for the case of By =0 and kA, =
kBy = 0.1. We have selected the evolution of the mode
at K’ = 0.226 because it corresponds to the most unstable
mode for By = 0. Exponential curves with the growth rates
predicted by Eq. (11) are also shown in the figure: the
slopes of the curves obtained from numerical simulations
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FIG. 3. Nondimensional growth rates for longitudinal pertur-
bation of a single carrier wave (solid line) and of two carrier
waves (dotted line).
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FIG. 4. Growth rates as a function of perturbation wave num-
ber for different angles @; in the legend angles are expressed in
degrees.

are in very good agreement with theoretical curves. These
results give us some confidence that the growth rates
are calculated correctly. The figure shows also that, as
expected, after some period of time the nonlinearity be-
comes important and the perturbed modes do not grow
indefinitely.

To conclude we have studied theoretically the influence
of a second wave system propagating in a different direc-
tion to the first. We have derived a simple model for the
interaction of two-wave systems propagating in different
wave directions. Results show that the instability region
and the growth rates are larger when two-wave systems are
considered. It is clear that this is a very idealized case and
definitely more realistic conditions of random spectra
should be considered. Nevertheless our goal was to inves-
tigate a basic physical mechanism that can in principle be
responsible for the formation of extreme events in crossing
sea states. Comparison with direct numerical simulations
of the primitive equations should be performed in order to
verify the relevance of the present results in more realistic
conditions.
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