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We present a zero-range pseudopotential applicable for all partial wave interactions between neutral
atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving
anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudo-
potential: we solve analytically the problem of two interacting spin-polarized fermions confined in a
harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional
system.
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Modeling of two-body interactions is the basic step in
the development of theories of many-body systems. In the
ultracold regime, atomic collisions are dominated by
s-wave scattering, and interactions can be accurately mod-
eled by the Fermi-Huang pseudopotential [1,2]. The situa-
tion changes, however, in the presence of scattering reso-
nances, which can strongly enhance the contribution from
higher partial waves. Such a possibility has been demon-
strated in recent experiments by employing Feshbach reso-
nances to tune the interactions of identical fermions in the
p wave [3–6]. In this context, the development of pseudo-
potentials for higher partial wave scattering is of crucial
importance for the theoretical description of ultracold
gases with l � 0 interactions.

There are several approaches in the literature to derive a
pseudopotential valid for all partial waves. The first deri-
vation comes from Huang and Yang [2]. Their pseudo-
potential, however, is incorrect with respect to l > 0 waves,
as was recently shown in [7]. Several alternatives have
been proposed [7–11], which have specific limitations.
For instance, [7] entails no regularization and is applicable
only to mean-field theories; [8] requires knowledge of the
wave function in the inner region of the shell potential and
taking the limit of shell radius going to zero in the last step
of the calculation; finally [9–11] consider only p-wave
interactions.

In this Letter, we address the problem of interactions in
all partial waves. We correct the original derivation of
Huang and Yang and obtain a comparatively simple
pseudopotential. Next, we derive explicit pseudopotential
forms for p- and d-wave interactions that are very conve-
nient in calculations involving anisotropic external poten-
tials. We illustrate this by solving analytically the problem
of two identical fermions confined in an anisotropic har-
monic trap. We finally turn to interactions of atoms in low
dimensional systems. We apply our p-wave pseudo-
potential to analyze the p-wave scattering in a quasi-two-
dimensional system [6] and show the occurrence of
confinement-induced resonances analogous to s-wave
scattering [12,13] and p-wave scattering in a quasi-one-
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dimensional system [14]. Our analysis is of direct interest
for studies of controlled interactions between tightly con-
fined fermionic atoms, relevant for applications to quantum
information processing [15].

First, we derive the pseudopotential for interactions in
all partial waves. We start from the Schrödinger equation
for the relative motion:
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��� k2���r� � V�r���r�; (1)

where k2 � 2�E=@2 and � denotes the reduced mass. We
assume that the potential V�r� is central and has a finite
range. Outside the range of the potential, the wave function
exhibits the following asymptotic behavior:
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where Ylm��;�� are spherical harmonics, the radial wave
functions Rl � Clm�jl�kr� � tan�lnl�kr�� are linear com-
binations of spherical Bessel and Neumann functions jl�r�
and nl�r�, Clm are coefficients that depend on the boundary
condition for r! 1, and the phase shifts �l are deter-
mined by the potential V�r�. Our goal is to replace V�r� by
the contact potential Vps�r�, which acts only at r � 0 and
gives the same asymptotic function �a�r� as the real
potential V�r�. Following Huang and Yang [2], we deter-
mine the pseudopotential from Vps�r��a�r� � @

2=�2���
��� k2��a�r�. Since jl�kr� is regular at r � 0, the only
contribution to the pseudopotential comes from the behav-
ior of nl�kr� for small r: nl�x� 	 ��2l� 1�!!=xl�1. Hence
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To calculate the action of the radial part of the Laplace
operator on the function 1=rl�1 at r � 0, one has to resort
to the theory of generalized functions. By applying the
Hadamard finite part regularization of the singular function
1-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.013201


PRL 96, 013201 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JANUARY 2006
1=rk [16], one can prove the following identity:�
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where ��n��r� denotes the nth derivative of the delta func-
tion. In comparison, Huang and Yang calculate (4) by
mapping on ��r�=rl, which leads them to the incorrect
result. In the final step of the derivation, we express the
coefficients Clm in terms of the regularization operator
@2l�1
r rl�1: Clm � �2l� 1�!!=�kl�2l� 1�!��
�@2l�1
r rl�1Rl�r��r�0. In this way we obtain the following

form of the pseudopotential:
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(5)

where the angular integral over �0 acts as a projection
operator on a state with a given quantum number l. Here,
Pl�x� is the Legendre polynomial, n � r=r, and n0 � r0=r0.
We note that in the calculation of the matrix elements of
Vps�r� the differentiation of the delta function is equiva-
lent to differentiation of the function that acts on the left-
hand side of the pseudopotential, with a proper change
of sign. Moreover, for functions behaving like rl for
small r, one can substitute ��l��r� � ��1�ll!��r�=rl and
��r� � 4�r2��r�, which shows that the s-wave component
of (5) is equivalent to Fermi-Huang pseudopotential
�2�@2 tan�0=��k���r�, whereas components with l > 0
differ from the pseudopotential of Huang and Yang [2] by a
prefactor.

Now we derive an alternative form of the pseudo-
potential, with projection operators expressed in terms of
the differential operators. Such representation is particu-
larly useful for problems involving anisotropic external
potentials, since in this case the wave function, containing
several components of the angular momentum, has to be
projected on a given partial wave interaction. Let us first
focus on the p-wave case. Expressing radial derivatives in
terms of the gradient operator @r � n 
 r, where r �
�@x; @y; @z�, and performing the angular integration in the
projection operator, we obtain the following form of the
pseudopotential for p-wave interactions:

Vp�r� �
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where the symbol r� ( ~r) denotes the gradient operator that
acts to the left (right) of the pseudopotential. Here, ap is the
p-wave scattering length: ap�k�3 � � tan�1�k�=k

3, which
in the Wigner-threshold regime can be approximated by a
constant a3

p � limk!0ap�k�
3. To derive (6), in the p-wave

component of pseudopotential (5) we applied the following
substitution: @3
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2 ! @rr@

3
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rr

2, which is
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equivalent for terms of the order of r, giving the only
nonvanishing contribution to the matrix elements of the
p-wave pseudopotential. In this way we preserve the form
of the regularization operator, which is crucial for an exact
treatment of the interacting atoms. We stress that the
presence of the full regularization operator in (6) is im-
portant, since for anisotropic external potentials the exact
wave functions obtained in the pseudopotential method
contain terms behaving like xi=r for small r. Such terms,
for instance, are not eliminated by the operator r@2

rr
2 [10].

We note that the pseudopotential for p-wave interactions in
the form containing a scalar product of gradients has been
derived for the first time by Omont [9]; however, in [9] it
contained an incorrect prefactor and did not include the
regularization operator.

A similar procedure can be repeated for d-wave inter-
actions. In this case we obtain the following pseudo-
potential:
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X
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where Dijkl � �ik�jl �
1
3�ij�kl, gd � �@2ad�k�5=�8��,

and ad�k� is the d-wave scattering length: ad�k�5 �
� tan�2�k�=k5. As can be easily verified, the pseudo-
potential (7) does not give any contribution for functions
exhibiting s- and p-wave symmetries, which results from
the implicit projection on d-wave contained in (7).

Two interacting spin-polarized fermions in a harmonic
trap.—We start from the integral form of the Schrödinger
equation for the relative motion of atoms:

��r� �
Z
d3r0G�r; r0�Vp�r0���r0�; (8)

where G�r; r0� � hrj�E� Ĥ��1jr0i is the single-particle
Green function, and Ĥ is the Hamiltonian including the
external potential. For a harmonic potential, G�r; r0� can be
represented by the following integral:
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which is convergent for energies smaller than the energy of
zero-point oscillations E0 � @�!x �!y �!z�=2. For E>
E0 the Green function can be determined by analytic
continuation of (9). Here, d �

�����������������
@=��!�

p
, �k � !k=!, !

denotes some reference frequency, and the product in (9)
runs over k � x; y; z.

Inserting the pseudopotential (6) into (8), we obtain a set
of linear equations

P
lAkl�E�cl � ck, where the coefficients

cl � �@xlr@
3
rr2��r��r�0, and the matrix elements are given

by Akl�E� � ��ap=d�
3�@xkr@

3
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0��r�r0�0. The en-

ergy levels are determined from the secular equation of the
matrix A�E� � I. Below we discuss the case of axially
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symmetric traps: !x � !y � !? � �!z. For pancake-
shaped traps with the anisotropy coefficient � � 1=n,
where n is some integer, the equations determining the
energy spectrum have the relatively simple form:

d3
z

a3
p
� �

8

n

Xn�1

k�0

��k�1=2
n � �

E
2�

3
4�

��k�1=2
n � E

2�
3
4

; m � 0; (10)
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where E � E=�@!z�, dz �
������������������
@=��!z�

p
, and m is the projec-

tion of the angular momentum on the z axis. As it can be
easily verified, for the case of spherically symmetric trap
(� � 1), Eqs. (10) and (11) coincide with the result of
Refs. [8,10]. We note that in the presence of an anisotropic
trap the degeneracy between states with m � 0 and m �
�1 is lifted. We have derived similar closed analytic for-
mulas for cigar-shaped traps with � � n; however, we do
not present them in the present Letter because of their
rather complicated form. In general, when � � 1=n and
� � n, the energy levels can be determined from an impli-
cit equation involving the integral representation (9) [17].

Figures 1(a) and 1(b) show the energy levels in harmonic
traps with � � 1=10 and � � 10, for different values of
the quantum number m. We note that for energies well
below the energy of zero-point oscillations, or for large
scattering volumes, the standard approximation of the
energy-independent pseudopotential breaks down, and in
this regime one has to include in the calculation the energy
dependence of the scattering length ap�k� and calculate the
energy spectrum in a self-consistent way [8,18].
FIG. 1 (color online). (a),(b) Energy spectrum of the two
fermions interacting in the p wave as a function of the scattering
volume a3

p=d
3, with d �

���������������
@=�!z

p
. The two particles are con-

fined in an axially symmetric harmonic trap with (a) � � !?=
!z � 0:1 and (b) � � 10. (c),(d) Energy spectrum of two atoms
interacting via a square-well model potential as a function of the
well depth U. The atoms are confined in an isotropic harmonic
potential and interact in (c) the p wave and (d) the s wave.
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To illustrate this procedure we calculate the energy
spectrum for a square-well model interaction, assuming
for simplicity spherically symmetric harmonic trap.
Figure 1(c) presents the energy levels of p-wave interact-
ing particles as a function of the square-well depth U
calculated for the square-well radius R0 � 0:05d. The
depth U is varied close to the resonance scattering for the
p wave, related to the appearance of a bound state at U �
�1974@!. The exact energy levels are compared with
predictions of the pseudopotential method given by
Eq. (10), and with the energy spectrum calculated in a
self-consistent way from Eq. (10) with a3

p replaced by
ap�k�

3 � � tan�1�k�=k
3. For comparison, Fig. 1(d) shows

the energy levels of s-wave interacting atoms, given in the
pseudopotential approximation by d=as � 2��34�

E
2�=

��14�
E
2� [19], where E � E=�@!� and as is the s-wave

scattering length.
One observes that self-consistent calculation with an

energy-dependent pseudopotential (EDP) provides very
accurate results for the energy spectrum. On the other
hand, the ordinary pseudopotential method fails for large
scattering volumes and for energies where the bound state
of the square-well potential appears. Moreover, its range of
applicability decreases for higher energy levels. For com-
parison, the ordinary s-wave pseudopotential is incorrect
only with respect to deep bound states.

This behavior can be explained by analyzing the effec-
tive range expansion: k3 cot�1�k� � �1=a3

p � k
2=�2R�� �

O�k4�, where R� can be interpreted as the effective range
for the p wave (for the square well, R� � R0=3). The sec-
ond term in the expansion can be neglected when kjapj 
�kR��1=3, which combined with the condition for the appli-
cability of the pseudopotential, kR�  1, gives kjapj  1.
Therefore, the regime where one can apply the ordinary,
energy-independent pseudopotential for p waves is quite
narrow. This can be compared to the s wave, where the
analogous condition takes the form kjaj  �k ~R��1, where
~R is the effective range for s-wave scattering and �k ~R��1 is
large.

Scattering of spin-polarized fermions in quasi-two-
dimensional systems.—The scattering solution can be
found from the Lippmann-Schwinger equation:

��r� � �0�r� �
Z
d3r0G��r; r0�Vp�r0���r0�; (12)

where �0�r� represents the wave function of the incoming
particle andG��r; r0� � hrj�E� Ĥ � i���1jr0i. The Green
function G��r; r0� describing the propagation of outgoing
waves can be determined from Eq. (9) by taking the limit
!? ! 0 and performing the analytic continuation for en-
ergies E> E0.

In two dimensions the scattered wave in the asymptotic
regime (�! 1) is described by f���eik�=

����
�
p

with
the scattering amplitude f��� � �2�ik��1=2 P1

m��1�
eim��ei2�m � 1�, where �m are scattering phase shifts
[20]. In the regime of energies @!z=2<E< 3@!z=2, the
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FIG. 2. Two-dimensional differential cross section in forward
direction jf�0�j2 in the scattering of two fermions in a quasi-two-
dimensional system as a function of p-wave scattering volume
a3
p, for different relative energies E of the particles. The inset

shows the value of the critical volume Vc, at which the system
exhibits the confinement-induced resonance.
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motion in the z direction is ‘‘frozen’’ to zero point oscil-
lations, and sufficiently far from the scattering center the
transverse wave function is given by  0�z� �
e�z

2=�2d2
z �=�1=4. By solving Eq. (12) with the pseudo-

potential (6), we obtain the scattering solution that for
p-wave interactions contains only m � �1 scattering
waves:

���� !
�!1

 0�z�
�
eik� �

4 cos�
1� i cot�1

eik���������������
2�ik�
p

�
: (13)

The scattering phase shift �1 is given by

cot�1 � �
2

3�k2d2
z

� ����
�
p

d3
z

a3
p
�W

�
E

2
�

1

4

��
; (14)

where W �x� is a function taking values of the order of 1
[21], and E � E=�@!z�. When cot�1 � 0, the system ex-
hibits confinement-induced resonance, which occurs at the
scattering volume Vc�E� �

����
�
p

d3
z=W �E=2� 1=4�. At low

energies (E ! 1
2 ) the function W �x� has a well-defined

limit: W �0� � 0:325 and Vc�0� � 5:4d3
z . This qualita-

tively differs from s-wave interactions, where cot�0 ex-
hibits logarithmic behavior for small k [13] and the
resonance condition for k! 0 depends on the relative
kinetic energy of the scattered particles. Figure 2 shows
the dependence of the differential cross section jf���j2 at
� � 0 on the scattering volume a3

p for different values of
the energy. We observe that at the low energies of the
scattered particles the curve is strongly peaked around
Vc. For higher energies the resonance is broader and finally
for E � 0:525 becomes not visible on Fig. 2. In this regime
of energies the resonance is present for positive values of
the scattering volume, which can be observed in the inset
of Fig. 2 presenting Vc�E�.
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In summary, we presented the zero-range pseudo-
potential applicable for all partial wave interactions. For
p and d waves, we derived an alternative representation of
the pseudopotential, in which the projection on spherical
harmonics is replaced by an appropriate differential opera-
tor. The p-wave pseudopotential has been applied to cal-
culate analytically the spectrum of two interacting
fermions in a harmonic trap and to study the scattering of
identical fermions in a quasi-two-dimensional system.

After completing this Letter we learned of the recent
work by Derevianko [22], in which a pseudopotential
equivalent to (5) is derived.
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